K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

11 tháng 7 2018

đây là diễn đàn học toán văn anh ko phải là trung tâm giải mã morse

22 tháng 8 2015

Các kí tự không được lặp lại và không tính thứ tự nên các kí tự đều khác nhau

- Kí tự thứ nhất có: 12 cách chọn

- Kí tự thứ hai có: 11 cách chọn

- Kí tự thứ 3 có: 10 cách chọn

......

- Kí tự thứ 8 có 5 cách chọn

Vậy có thể được: 12.11.10....6.5 =  ... mã 

4 tháng 5 2019

Trong toán học, một bất đẳng thức (tiếng Anh:Inequality) là một phát biểu về quan hệ thứ tự giữa hai đối tượng. (Xem thêm: đẳng thức)

  • Ký hiệu {\displaystyle a<b\!\ }{\displaystyle ab\!\ } có nghĩa là a nhỏ hơn b
  • Ký hiệu {\displaystyle a>b\!\ }{\displaystyle ab\!\ } có nghĩa là a lớn hơn b.

Những quan hệ nói trên được gọi là bất đẳng thức nghiêm ngặt; ngoài ra ta còn có

  • {\displaystyle a\leq b}{\displaystyle a\leq b} có nghĩa là a nhỏ hơn hoặc bằng b
  • {\displaystyle a\geq b}{\displaystyle a\geq b} có nghĩa là a lớn hơn hoặc bằng b.
  • {\displaystyle |a|\geq a}{\displaystyle |a|\geq a} có nghĩa là |a| lớn hơn hoặc bằng a.

Người ta còn dùng một ký hiệu khác để chỉ ra rằng một đại lượng lớn hơn rất nhiều so với một đại lượng khác.

  • Ký hiệu a >>b có nghĩa là a lớn hơn b rất nhiều

Các ký hiệu a, b ở hai vế của một bất đẳng thức có thể là các biểu thức của các biến. Sau đây ta chỉ xét các bất đẳng thức với các biến nhận giá trị trên tập số thực hoặc các tập con của nó.

Nếu một bất đẳng thức đúng với mọi giá trị của tất cả các biến có mặt trong bất đẳng thức, thì bất đẳng thức này được gọi là bất đẳng thức tuyệt đối hay không điều kiện. Nếu một bất đẳng thức chỉ đúng với một số giá trị nào đó của các biến, với các giá trị khác thì nó bị đổi chiều hay không còn đúng nữa thì nó được goị là một bất đẳng thức có điều kiện. Một bất đẳng thức đúng vẫn còn đúng nếu cả hai vế của nó được thêm vào hoặc bớt đi cùng một giá trị, hay nếu cả hai vế của nó được nhân hay chia với cùng một số dương. Một bất đẳng thức sẽ bị đảo chiều nếu cả hai vế của nó được nhân hay chia bởi một số âm.

Hai bài toán thường gặp trên các bất đẳng thức là

  1. Chứng minh bất đẳng thức đúng với trị giá trị của các biến thuộc một tập hợp cho trước, đó là bài toán chứng minh bất đẳng thức.
  2. Tìm tập các giá trị của các biến để bất đẳng thức đúng. Đó là bài toán giải bất phương trình.
  3. Tìm giá trị lớn nhất,nhỏ nhất của một biểu thức một hay nhiều biến. Đó gọi là tìm cực trị.

Mục lục

  • 1Các tính chất
    • 1.1Tính chất bắc cầu
    • 1.2Tính chất liên hệ đến phép cộng và phép trừ
    • 1.3Tính chất liên hệ đến phép nhân và phép chia
    • 1.4Áp dụng một hàm đơn điệu vào hai vế của một bất đẳng thức
    • 1.5Kiểu ký hiệu ghép nối(Bất đẳng thức kép)
  • 2Các bất đẳng thức nổi tiếng
  • 3Xem thêm
  • 4Tham khảo

Các tính chất[sửa | sửa mã nguồn]

Bất đẳng thức có các tính chất sau:

Tính chất bắc cầu[sửa | sửa mã nguồn]

Tính chất bắc cầu của bất đẳng thức được phát biểu như sau:

  • Với mọi số thực a, b,c:
    • Nếu a > b và b > c thì a > c
    • Nếu a < b và b < c thì a < c

Tính chất liên hệ đến phép cộng và phép trừ[sửa | sửa mã nguồn]

Tính chất liên quan đến phép cộng và phép trừ được phát biểu như sau:

Phép cộng và phép trừ với cùng một số thực bảo toàn quan hệ thứ tự trên tập số thực. Nghĩa là

  • Với mọi số thực a, b và c:
    • Nếu a > b thì a + c > b + c và a - c > b - c
    • Nếu a < b thì a + c < b + c và a - c < b - c

Tính chất liên hệ đến phép nhân và phép chia[sửa | sửa mã nguồn]

Tính chất liên quan đến phép nhân và phép chia được phát biểu như sau:

Phép nhân (hoặc chia) với một số thực dương bảo toàn quan hệ thứ tự trên tập số thực, phép nhân (hoặc chia)với một số thực âm đảo ngược quan hệ thứ tự trên tập số thực. Cụ thể:

  • Với mọi số thực a, b và c:
    • Nếu c là một số dương và a > b thì a × c > b × c và a/c > b/c
    • Nếu c là một số dương và a < b thì a × c < b × c và a/c < b/c
    • Nếu c là một số âm và a > b thì a × c < b × c và a/c < b/c
    • Nếu c là một số âm và a < b thì a × c > b × c và a/c > b/c

Áp dụng một hàm đơn điệu vào hai vế của một bất đẳng thức[sửa | sửa mã nguồn]

Từ định nghĩa của các hàm đơn điệu (tăng hoặc giảm) ta có thể đưa hai vế của một bất đẳng thức trở thành biến của một hàm đơn điệu tăng nghiêm ngặt mà bất đẳng thức kết quả vẫn đúng. Ngược lại nếu ta áp vào hai vế của một bất đẳng thức dạng hàm đơn điệu giảm nghiêm ngặt thì lúc ấy ta phải đảo chiều bất đẳng thức ban đầu để được bất đẳng thức đúng.

Điều đó có nghĩa là:

  1. Nếu có bất đẳng thức không nghiêm ngặt a ≤ b (hoặc a ≥b) và
    1. f(x) là hàm đơn điệu tăng thì f(a) ≤ f(b) (hoặc f(a)≥f(b)) (không đảo chiều)
    2. f(x) là hàm đơn điệu giảm thì f(a) ≥ f(b) (hoặc f(a)≤f(b))(đảo chiều)
  2. Nếu có bất đẳng thức nghiêm ngặt a < b (hoặc a > b) và
    1. f(x) là hàm đơn điệu tăng nghiêm ngặt thì f(a) < f(b) (hoặc f(a)>f(b)) (không đảo chiều)
    2. f(x) là hàm đơn điệu giảm nghiêm ngặt thì f(a) > f(b) (hoặc f(a)<f(b)) (đảo chiều)

Kiểu ký hiệu ghép nối(Bất đẳng thức kép)[sửa | sửa mã nguồn]

Ký hiệu a<b<c có nghĩa là a < b và b < c và do tính chất bắc cầu ta suy ra a < c. Dễ thấy rằng, cũng bằng các tính chất ở phần trên, chúng ta có thể cộng/trừ cùng một số vào ba số hạng này, hay nhân/chia cả ba số hạng này với cùng một số khác không và tùy vào dấu của số nhân/chia đó mà ta có đảo chiều bất đẳng thức hay không. Nhưng cần thận trọng vì bạn chỉ có thể làm điều đó với cùng một số, tức là a < b + e < c tương đương với a - e < b < c - e.

Tổng quát hơn, kiểu ký hiệu ghép nối này có thể dùng với một số bất kỳ các số hạng: chẳng hạn a1 ≤a2 ≤...≤an có nghĩa là ai≤ai+1 với i = 1,2,...,n-1. Theo tính chất bắc cầu, điều này tương đương với ai≤aj với mọi 1≤i≤j≤n.

Đôi khi, kiểu ký hiệu ghép nối được dùng với các bất đẳng thức có chiều ngược nhau, trong trường hợp này phải hiểu đây là việc viết ghép các bất đẳng thức riêng biệt cho hai số hạng kế cận nhau. Cho ví dụ, a < b > c ≤ d có nghĩa là a < b, b > c và c ≤d. Thường trong toán học, người ta ít xài kiểu ký hiệu này và trong ngôn ngữ lập trình, chỉ có một ít ngôn ngữ như Python cho phép dùng ký hiệu này.

Anynomous_Boss

Đỉnh kout Copy Paste

#Kill

16 tháng 4 2018

a khác 0 nx ko hoàn toàn đúng 

16 tháng 4 2018

đường thẳng d làm gì có m!

Vấn đề P chống lại NPVới quyển từ điển trong tay, liệu bạn thấy tra nghĩa của từ “thằn lắn” dễ hơn, hay tìm một từ phổ thông để diễn tả “loài bò sát có bốn chân, da có vảy ánh kim, thường ở bờ bụi” dễ hơn? Câu trả lời hầu như chắc chắn là tra nghĩa thì dễ hơn tìm từ.Những các nhà toán học lại không chắc chắn như thế. Nhà toán học Canada Stephen Cook là người đầu...
Đọc tiếp
  1. Vấn đề P chống lại NP
    Với quyển từ điển trong tay, liệu bạn thấy tra nghĩa của từ “thằn lắn” dễ hơn, hay tìm một từ phổ thông để diễn tả “loài bò sát có bốn chân, da có vảy ánh kim, thường ở bờ bụi” dễ hơn? Câu trả lời hầu như chắc chắn là tra nghĩa thì dễ hơn tìm từ.
    Những các nhà toán học lại không chắc chắn như thế. Nhà toán học Canada Stephen Cook là người đầu tiên, vào năm 1971, đặt ra câu hỏi này một cách “toán học”. Sử dụng ngôn ngữ lôgic của tin học, ông đã định nghĩa một cách chính xác tập hợp những vấn đề mà người ta thẩm tra kết quả dễ hơn (gọi là tập hợp P), và tập hợp những vấn đề mà người ta dễ tìm ra hơn (gọi là tập hợp NP). Liệu hai tập hợp này có trùng nhau không? Các nhà lôgic học khẳng định P # NP. Như mọi người, họ tin rằng có những vấn đề rất khó tìm ra lời giải, nhưng lại dễ thẩm tra kết quả. Nó giống như việc tìm ra số chia của 13717421 là việc rất phức tạp, nhưng rất dễ kiểm tra rằng 3607 x 3808 = 13717421. Đó chính là nền tảng của phần lớn các loại mật mã: rất khó giải mã, nhưng lại dễ kiểm tra mã có đúng không. Tuy nhiên, cũng lại chưa có ai chứng minh được điều đó.
    “Nếu P=NP, mọi giả thuyết của chúng ta đến nay là sai” – Stephen Cook báo trước. “Một mặt, điều này sẽ giải quyết được rất nhiều vấn đề tin học ứng dụng trong công nghiệp; nhưng mặt khác lại sẽ phá hủy sự bảo mật của toàn bộ các giao dịch tài chính thực hiện qua Internet”. Mọi ngân hàng đều hoảng sợ trước vấn đề lôgic nhỏ bé và cơ bản này!
  2. Các bạn làm đc ko?
0
1 tháng 12 2021

Dạ e học lớp 6

1 tháng 12 2021

làm ơn k cho mik đi ạ

THANKS

14 tháng 4 2019

Tưa học đến lớp 9 !! Ai giống mình thì hãy TÍCH nhoa !! HELP ME 

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

18 tháng 4 2018

mik chơi nhưng mà đây ko phải là nơi gửi câu hỏi linh tinh

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

18 tháng 4 2018

ưm,face bn là j để mink kb