K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2017

\(\left|\overrightarrow{AB}\right|=\left|\overrightarrow{AO}+\overrightarrow{OB}\right|=\left|-5\overrightarrow{i}+\left(-3\right)\overrightarrow{i}\right|=\left|8\overrightarrow{i}\right|=8\).
\(\left|\overrightarrow{BA}\right|=\left|\overrightarrow{AB}\right|=8\).
\(\left|\overrightarrow{AC}\right|=\left|\overrightarrow{AO}+\overrightarrow{OC}\right|=\left|-5\overrightarrow{i}+\left(-4\right)\overrightarrow{i}\right|=\left|9\overrightarrow{i}\right|=9\).
\(\left|\overrightarrow{BC}\right|=\left|\overrightarrow{BO}+\overrightarrow{OC}\right|=\left|3\overrightarrow{i}+\left(-4\right)\overrightarrow{i}\right|=\left|-\overrightarrow{i}\right|=1\).

a: \(\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AI}+\overrightarrow{IB}+\overrightarrow{DI}+\overrightarrow{IC}\)

\(=\overrightarrow{AI}+\overrightarrow{DI}=-\left(\overrightarrow{IA}+\overrightarrow{ID}\right)=-2\overrightarrow{IM}=2\overrightarrow{MI}\)

\(\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AC}+\overrightarrow{DB}\)

\(\Leftrightarrow\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow{DB}-\overrightarrow{DC}\)

\(\Leftrightarrow\overrightarrow{CA}+\overrightarrow{AB}=\overrightarrow{CD}+\overrightarrow{DB}=\overrightarrow{CB}\)(luôn đúng)

=>ĐPCM

b: \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GD}\)

\(=2\cdot\overrightarrow{GM}+2\cdot\overrightarrow{GI}=\overrightarrow{0}\)

AB+BC<AC

nên ko có tam giác ABC thỏa mãn nha bạn

c: \(AM^2=\dfrac{2\cdot\left(AB^2+AC^2\right)-BC^2}{4}=\dfrac{2\cdot\left(48^2+14^2\right)-50^2}{4}=625\)

nên AM=25(cm)

a: Xét ΔAHB vuông tại H có 

\(AB^2=AH^2+HB^2\)

nên AH=16(cm)

Xét ΔAHC vuông tại H và ΔBKC vuông tại K có 

\(\widehat{C}\) chung

Do đó: ΔAHC\(\sim\)ΔBKC

Suy ra: \(\dfrac{AH}{BK}=\dfrac{HC}{KC}=\dfrac{AC}{BC}\)

=>16/BK=20/24=5/6

=>BK=19,2(cm)

5 tháng 8 2019

tối thử

2 tháng 3 2016

A B C D 5 3 4

Ta có : \(\Delta ABC\) có AC là trung tuyến, nên ta có

\(AC^2=\frac{AB^2+AD^2}{2}-\frac{BD^2}{4}\)

\(\Leftrightarrow AD^2=\frac{1}{2}\left(4.AC^2+BD^2-2AB^2\right)\)

           \(=\frac{1}{2}\left(4.4^2+5^2-2.3^2\right)=73\)

Vậy \(AD=\sqrt{73}\approx8,5\)

 

2 tháng 3 2016

8,5 phải không