Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
oline math là để hỏi các bài toán chứ ko phải để đăng linh tinh đâu bạn sẽ bị khóa nick đấy
TL
Mik ko chắc chắn lắm nha sai thì t i k cho mik'
Vì các số đều là tử số 1 lên ta xét mẫu số thì thấy bé hơn'
Hok tốt
áp dụng AM-GM TA CÓ (GỌI BIỂU THỨC LÀ P NHÁ)
\(A^2+B^2+2=A^2+1+B^2+1=>2\left(A+B\right)\)
TƯƠNG TỰ VỚI MẤY MẪU KIA TA ĐƯỢC
P\(< =\frac{1}{2}\left(\frac{1}{A+B}+\frac{1}{B+C}+\frac{1}{A+C}\right)\)=\(\frac{1}{2}\left(\frac{\left(A+B\right)\left(B+C\right)+\left(B+C\right)\left(A+C\right)+\left(A+B\right)\left(A+C\right)}{\left(C+A\right)\left(B+C\right)\left(A+B\right)}\right)\)
=\(\frac{3\left(AB+AC+BC\right)+A^2+B^2+C^2}{\left(A+B\right)\left(B+C\right)\left(A+C\right)}\)
=\(\frac{\left(a+b+c\right)^2+ab+bc+ac}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)
ta có \(ab+ac+bc< =\frac{\left(a+b+c\right)^2}{3}\)
Bài 1:
b)
chứng minh EDCB là tgnt => góc AED = góc ACB
từ đó, chứng minh tam giác AED đồng dạng ACB (gg)
=> DE / BC = AD / AB
tam giác ADB vuông tại A => AD / AB = cotg A = cotg 45 = 1
c)
kẻ tiếp tuyến tại Ax của (O) (Ax thuộc nửa mp bờ AC chứa B)
góc xAB = ACB = AED
=> DE // Ax
Mà Ax vuông góc với OA nên OA vuông góc với DE. (đpcm)
CÓ 1TI9 LẤY KO
muon lay ko