K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2016

\(\left|x+6\right|-9=2x\)

\(\Rightarrow\left[\begin{array}{nghiempt}x+6-9=2x\\x-6+9=2x\end{array}\right.\)

\(\Rightarrow\left[\begin{array}{nghiempt}x-2x=-6+9\\x-2x=6-9\end{array}\right.\)

\(\Rightarrow\left[\begin{array}{nghiempt}-x=3\\-x=-3\end{array}\right.\)

Vậy \(x=-3\)

29 tháng 9 2016

Giúp mình câu này nữa nhé!

| 2x - 3 | + x = 2

21 tháng 8 2021

bào nào ??

21 tháng 8 2021

Chỉ phải làm câu 3 bài 1 thôi nhé !

CChiChỉChỉ undefined

13 tháng 3 2020

Ta có:

\(\frac{x+y}{3}=\frac{5-z}{1}=\frac{y+z}{2}=\frac{9+y}{5}=k\left(1\right)\)

\(\frac{\left(x+y\right)+\left(5-z\right)+\left(y+z\right)+\left(9+y\right)}{3+1+2+5}=\frac{x+y-4}{1}\)

=> \(\hept{\begin{cases}x+y-4=k\\x+y=3k\end{cases}}\)=> \(k+4=x+y\)

=> \(4+k=3k\Rightarrow4=2k\Rightarrow k=2\)

=> \(5-z=k\Rightarrow z=5-k=5-2=3\)

\(9+y=5k\Rightarrow y=5k-9=10-9=1\)

\(x+y=3k\Rightarrow x=3k-y=6-1=5\)

Từ (1) => \(\hept{\begin{cases}x=5\\y=1\\z=3\end{cases}}\)

13 tháng 3 2020

\(\frac{x+y}{5-z}=\frac{3}{1}\Leftrightarrow x+y=15-3z\) (1)

\(\frac{5-z}{y+z}=\frac{1}{2}\Leftrightarrow10-2z=y+z\Leftrightarrow y=10-3z\) (2)

\(\frac{y+z}{y+9}=\frac{2}{5}\Leftrightarrow5y+5z=2y+18\Leftrightarrow3y=18-5z\) (3)

Tù (2) và (3), ta có HPT: \(\hept{\begin{cases}y=10-3z\\3y=18-5z\end{cases}}\)<=> \(\hept{\begin{cases}y+3z=10\\3y+5z=18\end{cases}}\)

Giải HPT đó, ta có: \(y=1\)\(z=3\)

Thay \(y=1\) và \(z=3\) vào PT(1), ta có: \(x=15-3\cdot3-1=15-9-1=5\)

Vậy \(x=5\)\(y=1\) và \(z=3\).

14 tháng 8 2015

\(\frac{5x+7}{4}+\frac{3x+5}{8}>\frac{9x+4}{5}\)

\(\frac{10\cdot\left(5x+7\right)}{40}+\frac{5\cdot\left(3x+5\right)}{40}>\frac{8\cdot\left(9x+4\right)}{40}\)

10.(5x + 7) + 5.(3x + 5) > 8.(9x + 4)

10.(5x + 7) + 5.(3x + 5) - 8.(9x + 4) > 0

50x + 70 + 15x + 25 - 72x - 32 > 0

- 7x + 63 > 0

- 7.(x - 9) > 0

\(\Rightarrow x-9

15 tháng 8 2016

/x+1/+2=0

/x+1/=0-2=-2

vì /x+1/ luôn \(\ge0\) v mọi x

=> không có GT nào của x thõa mãn điều kiện đề ra

26 tháng 12 2022

\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.2^{32}}\)

Ta lấy vễ trên chia vế dưới

\(=3.2=6\)

\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}\)

Ta lấy vế trên chia vế dưới

\(=2^3.3=24\)

26 tháng 12 2022

\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.3^{32}}=3.2=6\)
\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}=2^3.3=8.3=24\)

20 tháng 8 2021

Bài 1: 

1) Kẻ tia Cx//AB//DE

Ta có: Cx//AB

\(\Rightarrow\widehat{BAC}+\widehat{ACx}=180^0\)(2 góc trong cùng phía)

\(\Rightarrow\widehat{ACx}=180^0-\widehat{BAC}=180^0-140^0=40^0\)

Ta có: Cx//DE

\(\Rightarrow\widehat{xCD}+\widehat{CDE}=180^0\)( 2 góc trong cùng phía)

\(\Rightarrow\widehat{xCD}=180^0-\widehat{CDE}=180^0-150^0=30^0\)

\(\Rightarrow\widehat{ACD}=\widehat{ACx}+\widehat{xCD}=40^0+30^0=70^0\)

2) Ta có AB//DE(gt)

         Mà DE⊥MN

=> AB⊥MN =>\(\widehat{AMN}=90^0\Rightarrow\dfrac{1}{2}\widehat{AMN}=45^0\Rightarrow\widehat{AMP}=45^0\) (do MP là tia phân giác \(\widehat{AMN}\))

Ta có AB//DE

=> \(\widehat{AMP}+\widehat{DPM}=180^0\) (2 góc trong cùng phía)

\(\Rightarrow\widehat{DPM}=180^0-\widehat{AMP}=180^0-45^0=135^0\)

20 tháng 8 2021

bạn ơi giúp mình nốt bài 2 đi mình không biết làm

26 tháng 7 2016

a) \(\left(x+1\right)\left(x-2\right)< 0\Rightarrow\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}}\Rightarrow x=\left\{1;0\right\}\)

4 tháng 9 2016

b) Xét 2 trường hợp

+ TH1: \(\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 2\\x< -\frac{2}{3}\end{cases}}}\)=> \(x< -\frac{2}{3}\)thỏa mãn đề bài

+ TH2: \(\hept{\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}\Rightarrow\hept{\begin{cases}x>2\\x>-\frac{2}{3}\end{cases}}}\)=> x > 2 thỏa mãn đề bài

Vậy \(\orbr{\begin{cases}x< -\frac{2}{3}\\x>2\end{cases}}\)thỏa mãn đề bài

14 tháng 11 2021

a) \(k=-5\)

b) \(-5x=y\)

c)  x             -4                 -1                2                   3

     y             20                 5               -10               -15

Tìm x xong rồi tìm y

3 thì làm kiểu gì cũng được