Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta thấy:
$(\frac{1}{3}x-5)^{2014}\geq 0$ với mọi $x$ (do số mũ chẵn)
$(y^4-\frac{1}{16})^8\geq 0$ với mọi $y$
Do đó để tổng của chúng $=0$ thì:
$\frac{1}{3}x-5=y^4-\frac{1}{16}=0$
Có:
$\frac{1}{3}x-5=0$
$\Rightarrow x=15$
$y^4-\frac{1}{16}=0$
$\Rightarrow y^4=\frac{1}{16}=(\frac{1}{2})^4=(\frac{-1}{2})^4$
$\Rightarrow y=\pm \frac{1}{2}$
\(5-\left|3x-1\right|=3\)
\(\left|3x-1\right|=2\)
\(\Rightarrow\orbr{\begin{cases}3x-1=2\\3x-1=-2\end{cases}}\Rightarrow\orbr{\begin{cases}3x=3\\3x=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{-1}{3}\end{cases}}\)
vậy \(\orbr{\begin{cases}x=1\\x=\frac{-1}{3}\end{cases}}\)
\(\left|x+\frac{3}{4}\right|-5=-2\)
\(\left|x+\frac{3}{4}\right|=3\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{3}{4}=3\\x+\frac{3}{4}=-3\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{9}{4}\\x=-\frac{15}{4}\end{cases}}\)
\(\left(1-2x\right)^2=9\)
\(\left(1-2x\right)^2=3^2\)
\(\Rightarrow1-2x=3\)
\(\Rightarrow2x=-2\)
\(\Rightarrow x=-1\)
vậy \(x=-1\)
\(\left(x+5\right)^3=-64\)
\(\left(x+5\right)^3=\left(-4\right)^3\)
\(\Rightarrow x+5=-4\)
\(\Rightarrow x=-9\)
vậy \(x=-9\)
\(\left(2x+1\right)^2=\frac{4}{9}\)
\(\left(2x+1\right)^2=\left(\frac{2}{3}\right)^2\)
\(\Rightarrow2x+1=\frac{2}{3}\)
\(\Rightarrow2x=\frac{-1}{3}\)
\(\Rightarrow x=\frac{-1}{6}\)
vậy \(x=-\frac{1}{6}\)
\(\dfrac{x}{9}< \dfrac{4}{7}< \dfrac{x+1}{9}\)
=>\(\dfrac{7x}{63}< \dfrac{36}{63}< \dfrac{7x+7}{63}\)
\(\Rightarrow7x< 36< 7x+7\)
\(\Rightarrow x< \dfrac{36}{7}< x+1\)
\(\Rightarrow x< 5\dfrac{1}{7}< x+1\)
\(\Rightarrow x=5\)
\(\dfrac{x}{9}\) < \(\dfrac{4}{7}\) < \(x\) + \(\dfrac{1}{9}\)
\(\dfrac{7x}{63}\) < \(\dfrac{36}{63}\) < \(\dfrac{63x}{63}\) + \(\dfrac{7}{63}\)
7\(x\) < 36 < 63\(x\) + 7
⇒\(\left\{{}\begin{matrix}7x< 36\\63x+7>36\end{matrix}\right.\)⇒\(\left\{{}\begin{matrix}x< \dfrac{36}{7}\\63x>36-7\end{matrix}\right.\)⇒\(\left\{{}\begin{matrix}x< \dfrac{36}{7}\\63x>29\end{matrix}\right.\)⇒\(\left\{{}\begin{matrix}x< \dfrac{36}{7}\\x>\dfrac{29}{63}\end{matrix}\right.\)
\(\dfrac{29}{63}\)< \(x\) < \(\dfrac{36}{7}\) vì \(x\in\) Z nên \(x\in\) { 1; 2; 3; 4; 5}
⇒ \(\dfrac{x}{9}\) = \(\dfrac{1}{9}\); \(\dfrac{2}{9}\); \(\dfrac{3}{9}\); \(\dfrac{4}{9}\);\(\dfrac{5}{9}\)
1) \(3^x=\dfrac{9^8}{27^3\cdot81^2}\)
\(\Rightarrow3^x=\dfrac{\left(3^2\right)^8}{\left(3^3\right)^3\cdot\left(3^4\right)^2}\)
\(\Rightarrow3^x=\dfrac{3^{16}}{3^{15}}\)
\(\Rightarrow3^x=3\)
\(\Rightarrow x=1\)
2) \(\dfrac{2^{4-x}}{16^5}=32^6\)
\(\Rightarrow\dfrac{2^{4-x}}{\left(2^4\right)^5}=\left(2^5\right)^6\)
\(\Rightarrow\dfrac{2^{4-x}}{2^{20}}=2^{30}\)
\(\Rightarrow2^{4-x}=2^{20}\cdot2^{30}\)
\(\Rightarrow2^{4-x}=2^{50}\)
\(\Rightarrow4-x=50\)
\(\Rightarrow x=-46\)
3) \(\dfrac{2^{2x-3}}{4^{10}}=8^3\cdot16^5\)
\(\Rightarrow\dfrac{2^{2x-3}}{\left(2^2\right)^{10}}=\left(2^3\right)^3\cdot\left(2^4\right)^5\)
\(\Rightarrow\dfrac{2^{2x-3}}{2^{20}}=2^{29}\)
\(\Rightarrow2^{2x-3}=2^{49}\)
\(\Rightarrow2x-3=49\)
\(\Rightarrow2x=52\)
\(\Rightarrow x=26\)
\(\dfrac{1}{2}-3x+\left|x-1\right|=0\\ \Rightarrow3x+\left|x-1\right|=\dfrac{1}{2}-0\\ \Rightarrow3x+\left|x-1\right|=\dfrac{1}{2}\\ \Rightarrow\left|x-1\right|=\dfrac{1}{2}-3x\\ \Rightarrow\left[{}\begin{matrix}x-1=\dfrac{1}{2}-3x\\x-1=-\dfrac{1}{2}+3x\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x+3x=\dfrac{1}{2}+1\\x-3x=-\dfrac{1}{2}+1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}4x=\dfrac{3}{2}\\2x=\dfrac{1}{2}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{8}\\x=\dfrac{1}{4}\end{matrix}\right.\)
__
\(\dfrac{1}{2}\left|2x-1\right|+\left|2x-1\right|=x+1\\ \Rightarrow\left|2x-1\right|\cdot\left(\dfrac{1}{2}+1\right)=x+1\\ \Rightarrow\left|2x-1\right|\cdot\dfrac{3}{2}=x+1\\ \Rightarrow\left|2x-1\right|=x+1:\dfrac{3}{2}\\ \Rightarrow\left|2x-1\right|=x+\dfrac{2}{3}\\ \Rightarrow\left[{}\begin{matrix}2x-1=x+\dfrac{2}{3}\\2x-1=-x-\dfrac{2}{3}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}2x-x=\dfrac{2}{3}+1\\2x+x=-\dfrac{2}{3}+1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\3x=\dfrac{1}{3}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{1}{9}\end{matrix}\right.\)
Câu 2:
\(A\left(x\right)=x^2+3x+1\)
\(B\left(x\right)=2x^2-2x-3\)
a) Tính A(x) là sao em?
b) \(A\left(x\right)+B\left(x\right)=\left(x^2+3x+1\right)+\left(2x^2-2x-3\right)\)
\(=x^2+3x+1+2x^2-2x-3\)
\(=\left(x^2+2x^2\right)+\left(3x-2x\right)+\left(1-3\right)\)
\(=3x^2+x-2\)
Câu 1:
\(M\left(x\right)=x^3+3x-2x-x^3+2\)
\(=\left(x^3-x^3\right)+\left(3x-2x\right)+2\)
\(=x+2\)
Bậc của M(x) là 1
Làm mẫu câu a nhé:
Ta có: \(2x=3y\)
\(\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x^2}{9}=\frac{y^2}{4}\)
Áp dụng t/c dãy tỉ số = nhau ta có:
\(\frac{x}{3}=\frac{y}{2}=\frac{x^2}{9}=\frac{y^2}{4}=\frac{x^2-y^2}{9-4}=5\)
\(\Rightarrow x=3.5=15\)
\(y=5.2=10\)
Ý 1:
\(2x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{2}\)
Áp dụng t/c DTSBN ta có : \(\frac{x}{3}=\frac{y}{2}=\frac{x^2-y^2}{3^2-2^2}=\frac{25}{5}=5\)
=> x,y=...
\(\frac{x}{3}=\frac{y}{4}\)
Áp dụng t/c DTSBN ta có : \(\frac{x}{3}=\frac{y}{4}=\frac{3x-2y}{3.3-2.4}=\frac{5}{1}=5\)
=>x,y=...
\(3x=2y=5z\Leftrightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{3}\)
Áp dụng t/c DTSBN ta có : \(\frac{x}{2}=\frac{y}{5}=\frac{z}{3}=\frac{y-2x}{5-2.2}=\frac{5}{1}=5\)
=>x,y,z=....
|3x-1|+4=9
|3x-1| =9-4
|3x-1| =5
\(\Rightarrow\)3x-1=5; 3x-1=-5
\(\Rightarrow\)3x=5+1; 3x=-5+1
\(\Rightarrow\)3x=6; 3x=-4
\(\Rightarrow\)x=
|3x-1|+4=9
|3x-1| = 9-4
|3x-1| = 5
\(\Rightarrow\orbr{\begin{cases}3x-1=5\\3x-1=-5\end{cases}}\Rightarrow\orbr{\begin{cases}3x=6\\3x=-4\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{-4}{3}\end{cases}}\)
Vậy x=-4/3 hoặc x=2