\(A=\frac{x-\sqrt{x}+1}{x\sqrt{x}+1}+\frac{x+\sqrt{x}+1}{x\sqrt{x}-1}+\frac{\sqrt{x}-2}{\sqrt{x}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2018

\(\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)

\(=\frac{\sqrt{x}-\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{x-1-\left(x-4\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{3}\)

\(=\frac{\sqrt{x}-2}{3\sqrt{x}}\)

27 tháng 9 2018

\(\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)Đkxđ : x>2

=(\(\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)\(:\left(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{\left(x-1\right)-\left(x-4\right)}\)

\(=\frac{1}{\sqrt{x}}.\frac{\sqrt{x}-2}{3}=\frac{\sqrt{x}-2}{3\sqrt{x}}\)

28 tháng 10 2016

Bạn xem lại đề nhé là \(\sqrt{x-1}\)hay \(\sqrt{x}-1\)

28 tháng 10 2016

\(\sqrt{x}-1\) mik nhầm đề 

Ta có: \(\frac{2x+2}{\sqrt{x}}+\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x^2+\sqrt{x}}{x\sqrt{x}+x}\)

\(=\frac{2\left(x+1\right)}{\sqrt{x}}+\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\cdot\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x\left(\sqrt{x}+1\right)}\)

\(=\frac{2\left(x+1\right)}{\sqrt{x}}+\frac{x+\sqrt{x}+1}{\sqrt{x}}-\frac{x-\sqrt{x}+1}{\sqrt{x}}\)

\(=\frac{2x+2+x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}\)

\(=\frac{2x+2\sqrt{x}+2}{\sqrt{x}}\)

8 tháng 9 2020

cảm ơn bạn

10 tháng 8 2015

Đk: x > 0, x khác 1

Làm ngắn gọn thôi nhé, bạn tự khai triển ra

\(A=\frac{x+2}{x\sqrt{x}-1}+\left(\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\right)=\frac{x+2}{x\sqrt{x}-1}+\frac{-\sqrt{x}-2}{\sqrt{x}^3-1}\)

\(\frac{\left(\sqrt{x}-1\right)x^2-x+\sqrt{x}}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}^3-1\right)}\)(Chú ý \(x\sqrt{x^3}=x^2\sqrt{x},\sqrt{x^3}=\left|x\right|\sqrt{x}=x\sqrt{x}\left(x>0\right)\)

Tử = \(\sqrt{x}\left[\left(\sqrt{x}-1\right)x\sqrt{x}-\left(\sqrt{x}-1\right)\right]=\sqrt{x}\left(\sqrt{x}-1\right)\left(x\sqrt{x}-1\right)\)

Mẫu = ....

Rồi giản ước. Kết quả là \(A=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)