Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=2/1.3 + 2/3.5 + 2/5.7 + ... + 2/99.101
A= 2 - 1/3 + 1/3 - 1/5 + 1/5 - ... + 2/99 - 2/101
A = 2 - 2/101 = 200/101
B = 3-1/3+1/3-1/5+1/5-...+3/49-3/51
B = 3-3/51(tự tính nhé)
C = 5(5/1.6+5/6.11+5/11.16+....+5/26-5/31
C = 5(5-1/31)(tự tính)
D rút gon cho 2 rồi 3D , sau đó 5(3/.... tương tự các cách làm trên)
2E nhân lên rồi giải giống trên
3F Rồi nhân 4/77 và rút gọn thì tính được
a, A= \(\frac{1}{1}\)- \(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{5}\)+......+\(\frac{1}{99}\)-\(\frac{1}{100}\)
A=\(\frac{1}{1}\)-\(\frac{1}{100}\)+(-\(\frac{1}{3}\)+\(\frac{1}{3}\)-.....-\(\frac{1}{99}\)+\(\frac{1}{99}\))
A=\(\frac{1}{1}\)-\(\frac{1}{100}\)+0
A=1-\(\frac{1}{100}\)=\(\frac{100}{100}\)-\(\frac{1}{100}\)=\(\frac{99}{100}\)
\(S=5\times\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}\right)\)
\(=5\times\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}\right)\)
\(=5\times\left(1-\frac{1}{16}\right)\)
\(=5\times\frac{15}{16}=\frac{75}{16}\)
Vậy \(S=\frac{75}{16}\)
a) \(A=\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+......+\frac{1}{2017.2022}\)
\(5A=5.\left(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+.....+\frac{1}{2017.2022}\right)\)
\(5A=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+......+\frac{5}{2017.2022}\)
\(5A=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+........+\frac{1}{2017}-\frac{1}{2022}\)
\(5A=1-\frac{1}{2022}\)
\(5A=\frac{2022}{2022}-\frac{1}{2022}\)
\(5A=\frac{2021}{2022}\)
\(A=\frac{2021}{2022}\div5\)
\(A=\frac{20201}{10110}\)
TL:
\(\frac{5}{6}=\frac{1}{2}+\frac{1}{3}\)
@@@@@@@@@@
HT
Cách 2:
\(\frac{1}{11.11}+\frac{1}{10.10}+....+\frac{1}{5.5}<\frac{1}{10.11}+\frac{1}{9.10}+....+\frac{1}{4.5}=\frac{1}{4.5}+\frac{1}{5.6}+......+\frac{1}{10.11}\)\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-.....-\frac{1}{11}=\frac{7}{44}\)
Nên 1/11.11 + 1/10.10 +.....+1/5.5 < 7/44
Cách này thuận tiện hơn
b: \(A=5\left(\dfrac{5}{1\cdot6}+\dfrac{5}{6\cdot11}+...+\dfrac{5}{26\cdot31}\right)\)
\(=5\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{26}-\dfrac{1}{31}\right)\)
\(=5\cdot\dfrac{30}{31}=\dfrac{150}{31}\)
c: \(C=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}\)
=1-1/16=15/16
Đặt A
Ta có công thức :
\(\frac{a}{b.c}=\frac{a}{c-b}.\left(\frac{1}{b}-\frac{1}{c}\right)\)
Dựa vào công thức, ta có
\(A=\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+......+\frac{1}{48}-\frac{1}{50}\right)\)
\(A=\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{50}\right)=\frac{5}{2}.\left(\frac{12}{25}\right)=\frac{6}{5}\)
Ai thấy đúng thì ủng hộ nha !!!
a, \(\frac{5}{2.4}+\frac{5}{4.6}+\frac{5}{6.8}+...+\frac{5}{48.50}\)
=\(\frac{5}{2}\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{48.50}\right)\)
=\(\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{48}-\frac{1}{50}\right)\)
=\(\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{50}\right)\)=\(\frac{5}{2}.\frac{12}{25}\)=\(\frac{6}{5}\)
#)Giải :
a)\(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{24.25}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{24}-\frac{1}{25}\)
\(=\frac{1}{5}-\frac{1}{25}\)
\(=\frac{4}{25}\)
b)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)
\(=\frac{100}{101}\)
a) \(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{24.25}\)
= \(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{24}-\frac{1}{25}\)
= \(\frac{1}{5}-\frac{1}{25}\)
= \(\frac{4}{25}\)
b) \(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\)
= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
= \(1-\frac{1}{101}\)
= \(\frac{100}{101}\)
c) \(5\frac{2}{7}.\frac{8}{11}+5\frac{2}{7}.\frac{5}{11}-5\frac{2}{7}.\frac{2}{11}\)
= \(5\frac{2}{7}.\left(\frac{8}{11}+\frac{5}{11}-\frac{2}{11}\right)\)
= \(5\frac{2}{7}\)
= \(\frac{37}{7}\)
\(A=\frac{5\cdot5}{1.6}+\frac{5.5}{6.11}+...+\frac{5.5}{26.31}\)
\(=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\right)\)
\(=5\left(1-\frac{1}{31}\right)\)
\(=5\times\frac{30}{31}\)
\(=\frac{150}{31}\)