Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{5}{2.4}+\frac{5}{4.6}+\frac{5}{6.8}+..+\frac{5}{100.102}\)
\(\frac{2}{5}A=\frac{2}{2.4}+\frac{2}{4.6}+\frac{3}{6.8}+...+\frac{2}{100.102}\)
\(\frac{2}{5}A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{100}-\frac{1}{102}\)
\(\frac{2}{5}A=\frac{1}{2}-\frac{1}{102}\)
\(A=\frac{25}{51}:\frac{2}{5}\)
\(A=\frac{125}{102}\)
Ủng hộ mk nha !!! *_*
\(\text{Đ}\text{ặt}:A=\frac{5}{2.4}+\frac{5}{4.6}+\frac{5}{6.8}+..+\frac{5}{100.102}\)
\(\frac{2}{5}A=\frac{2}{2.4}+\frac{2}{4.6}+\frac{3}{6.8}+...+\frac{2}{100.102}\)
\(\frac{2}{5}A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{100}-\frac{1}{102}\)
\(\frac{2}{5}A=\frac{1}{2}-\frac{1}{102}\)
\(A=\frac{25}{51}:\frac{2}{5}\)
\(A=\frac{125}{102}\)
\(\frac{2.2}{1.3}x\frac{3.3}{2.4}x\frac{4.4}{3.5}x\frac{5.5}{4.6}x\frac{6.6}{5.7}\)=\(2.\frac{2}{3}.\frac{3}{2}.\frac{3}{4}.\frac{4}{3}.\frac{4}{5}.\frac{5}{4}.\frac{5}{6}.\frac{6}{5}.\frac{6}{7}\)
\(=2.\frac{6}{7}=\frac{12}{7}\)
22/1.3 × 32/2.4 × 42/3.5 × 52/4.6 × 62/5.7
= 2.3.4.5.6/1.2.3.4.5 × 2.3.4.5.6/3.4.5.6.7
= 6 × 2/7
= 12/7
Câu 1 :
=\(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}.\)
=\(\frac{1}{3}-\frac{1}{7}=\frac{4}{21}.\)
Câu 2 :
=\(\frac{23.23+6}{23.\left(23+1\right)-17}\)
=\(\frac{23.23+6}{23.23+23-17}\)
=\(\frac{23.23+6}{23.23+6}\)
=1.
\(I=\frac{5.4^{15}.9^9-4.3^{20}.8^9}{5.2^9.6^{19}-7.2^{29}.27^6}=\frac{5.2^{30}.3^{27}-2^2.3^{20}.2^{27}}{5.2^9.2^{19}.3^{19}-7.2^{29}.3^{18}}\)
\(=\frac{5.2^{30}.3^{27}-3^{30}.2^{29}}{5.2^{28}.3^{19}-7.2^{29}.3^{18}}\)
\(=\frac{2^{29}.3^{27}.\left(5.2-3^3\right)}{2^{28}.3^{18}.\left(5.3-2.7\right)}\)
\(=\frac{2^{29}.3^{27}.-17}{2^{18}.3^{18}}\)
\(=\frac{2^9.3^9.-17}{1}\)
Ta có \(H=\frac{\left(3.4.2^{16}\right)}{11.2^{13}.4^{11}-16^9}\)
\(=\frac{3.4.2^{16}}{11.2^{13}.2^{22}-2^{36}}\)
\(=\frac{3.2^{18}}{11.2^{35}-2^{36}}\)
\(=\frac{3.2^{18}}{2^{35}.\left(11-2\right)}\)
\(=\frac{3.2^{18}}{2^{35}.3^2}\)
\(=\frac{1}{2^{17}.3}\)
\(\left(\frac{4}{2.4}+\frac{4}{4.6}+.....+\frac{4}{4020.4022}\right)x=2010\)
\(\Leftrightarrow2x\left(\frac{2}{2.4}+\frac{2}{4.6}+....+\frac{2}{4020.4022}\right)=2010\)
\(\Leftrightarrow2x\left(\frac{1}{2}-\frac{1}{4}+.....+\frac{1}{4020}-\frac{1}{4022}\right)=2010\)
\(\Leftrightarrow2x\left(\frac{1}{2}-\frac{1}{4022}\right)=2010\)
Tự biên tự diễn
Ko chép lại đề nhé
<=> 2( 2/2.4 + 2/2.6 + 2/2.8 +...+ 2/ 4020.4022) x= 2010
<=> 2( 1/2 - 1/4 + 1/4 - 1/6 + 1/6 - 1/8 +....+ 1/4020- 1/4022 )x=2010
<=> ( 1/2 - 1/4022)2x = 2010
<=> ( 2011/4022 - 1/4022 )2x = 2010
<=>( 2010/4022) .2x= 2010
<=> 2x = 2010 : 2010/4022
<=> 2x = 4022
=> x = 2011
Vậy x = 2011
Đặt A
Ta có công thức :
\(\frac{a}{b.c}=\frac{a}{c-b}.\left(\frac{1}{b}-\frac{1}{c}\right)\)
Dựa vào công thức, ta có
\(A=\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+......+\frac{1}{48}-\frac{1}{50}\right)\)
\(A=\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{50}\right)=\frac{5}{2}.\left(\frac{12}{25}\right)=\frac{6}{5}\)
Ai thấy đúng thì ủng hộ nha !!!
a, \(\frac{5}{2.4}+\frac{5}{4.6}+\frac{5}{6.8}+...+\frac{5}{48.50}\)
=\(\frac{5}{2}\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{48.50}\right)\)
=\(\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{48}-\frac{1}{50}\right)\)
=\(\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{50}\right)\)=\(\frac{5}{2}.\frac{12}{25}\)=\(\frac{6}{5}\)