Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2n+3}{n+2}+\frac{3n+7}{n+2}-\frac{5n}{n+2}\)
\(A=\frac{2n+3+3n+7-5n}{n+2}\)
\(A=\frac{5n-5n+10}{n+2}\)
\(A=\frac{10}{n+2}\)
Vì A là số nguyên tố bé nhất.
\(A=\frac{10}{n+2}=2\)
\(10:\left(n+2\right)=2\)
\(n+2=10:2\)
\(n+2=5\)
\(n=5-2\)
Vậy \(n=3\)
Bài 1:
ĐKXĐ:\(n\ne-2\)
Ta có:\(\frac{n-1}{n+2}=1-\frac{3}{n+2}\)
Để phân số đó nguyên thì \(n+2\inƯ\left(3\right)\)
=> \(n+2=\left\{-3;-1;1;3\right\}\)
=> \(n=\left\{-5;-3;-1;1\right\}\)
Mà \(n\in N\)=> n=1
Bài 2:
ĐKXĐ \(a\ne1;-1\)
Để \(\frac{21}{a}\in N\)
Thì \(a\inƯ\left(21\right)\)
=>a={1;3;7;21} (1)
Để \(\frac{22}{a-1}\in N\)thì \(a-1\inƯ\left(22\right)\)
=>a-1={1;2;11;22}
=>a={1;3;12;23} (2)
Để \(\frac{24}{a+1}\in N\)Thì \(a+1\inƯ\left(24\right)\)
=> a+1={1;2;4;6;12;24}
=>a={0;1;3;5;11;23} (3)
Kết hợp (1);(2);(3) và ĐKXĐ ta có a=3 thì cả 3 phân số trên là số tự nhiên
\(A=\frac{2n+3+3n+7-5n}{n+2}=\frac{10}{n+2}\)
A là số nguyên tố bé nhất \(\Leftrightarrow\) A=2 \(\Leftrightarrow\) n+2=5\(\Leftrightarrow\) n=3
1 ) Vì số nguyên tố chỉ có 2 ước tự nhiên là 1 và chính nó
Để \(\left(n+3\right)\left(n+1\right)\)là nguyên tố
\(\Rightarrow n+1=1,n+3\)là số nguyên tố do \(n+3>n+1\)
\(n=0\Rightarrow\left(n+3\right)\left(n+1\right)=3\)
\(\Rightarrow n=0\)( chọn )
2 ) Tổng 7a5 + 8b4 chia hết cho 9 nên 7 + a + 5 + 8 + b + 4 \(⋮\) 9 , tức là :
24 + a + b \(⋮\) 9 . Suy ra a + b \(\in\){ 3 ; 12 } .
Ta có a + b > 3 ( vì a – b = 6 ) nên a + b = 12 .
Từ a + b = 12 và a – b = 6 , ta có a = ( 12 + 6 ) : 2 = 9
Suy ra b = 3 .
Thử lại : 795 + 834 = 1629 chia hết cho 9 .
để 3/n-2 thuộc số tự nhiên
=>3 chia hết n-2
=>n-2\(\in\){1,-1,3,-3}
=>n\(\in\){3,1,5,-1}
mà n thuộc số tự nhiên
=>A\(\in\){3,1,5}
để A= \(\frac{3}{n-2}\) là stn <=> 3 chia hết cho n-2
=> n-2 thuộc Ư(3)
mà Ư(3)= ( 1;3)
ta có bg :
vậy n = 3;5
thay vào A ta đc A = 3 ;1