Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\frac{2x-y}{x+y}=\frac{2}{3}\)
\(\Rightarrow3\left(2x-y\right)=2\left(x+y\right)\)
\(\Rightarrow6x-3y=2x+2y\)
\(\Rightarrow6x-2x=2y+3y\)
\(\Rightarrow4x=5y\)
\(\Rightarrow\frac{x}{y}=\frac{5}{4}\)
2x-y/x+y = 2/3
=> (2x-y).3 = (x+y).2
=> 6x - 3y = 2x + 2y
=> 6x - 2x = 2y + 3y
=> 4x = 5y
=> x/y = 5/4
a) Ta có: \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}\) => \(\frac{y}{12}=\frac{z}{15}\)
=> \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x-y-z}{8-12-15}=-\frac{28}{19}\)
=> \(\hept{\begin{cases}\frac{x}{8}=-\frac{28}{19}\\\frac{y}{12}=-\frac{28}{19}\\\frac{z}{15}=-\frac{28}{19}\end{cases}}\) => \(\hept{\begin{cases}x=-\frac{28}{19}.8=-\frac{224}{19}\\y=-\frac{28}{19}.12=-\frac{336}{19}\\z=-\frac{28}{19}.15=-\frac{420}{19}\end{cases}}\)
Vậy ...
b) HD: nhân chéo lên -> tìm y -> thay y -> tìm x
c) Ta có: \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\) => \(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\) => \(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
=> \(\hept{\begin{cases}\frac{x^2}{4}=\frac{1}{4}\\\frac{y^2}{16}=\frac{1}{4}\\\frac{z^2}{36}=\frac{1}{4}\end{cases}}\) => \(\hept{\begin{cases}x^2=\frac{1}{4}\cdot4=1\\y^2=\frac{1}{4}\cdot16=4\\z^2=\frac{1}{4}\cdot36=9\end{cases}}\) => \(\hept{\begin{cases}x=\pm1\\y=\pm2\\z=\pm3\end{cases}}\)
Vậy ...
c) \(\frac{2x}{8}=\frac{16}{x}\)
\(\Leftrightarrow\frac{x}{4}=\frac{16}{x}\)
\(\Leftrightarrow x^2=64\)
\(\Leftrightarrow x=\pm\sqrt{64}=\pm8\)
b) \(4x-1=3x-2\)
\(\Leftrightarrow4x-3x=1-2\)
\(\Leftrightarrow x=-1\)
\(\frac{1}{99.97}-\frac{1}{97.95}-\frac{1}{95.93}-\frac{1}{5.3}-\frac{1}{3.1}\)
\(=\frac{1}{2}.\left(\frac{2}{99.97}-\frac{2}{97.95}-\frac{2}{95.93}-\frac{2}{5.3}-\frac{2}{3.1}\right)\)
\(=\frac{1}{2}.\left(\frac{99-97}{99.97}-\frac{97-95}{97.95}-\frac{95-93}{95.93}-\frac{5-3}{5.3}-\frac{3-1}{3.1}\right)\)
\(=\frac{1}{2}.\left[\left(\frac{99}{99.97}-\frac{97}{99.97}\right)-\left(\frac{97}{97.95}-\frac{95}{97.95}\right)-\left(\frac{95}{95.93}-\frac{93}{95.93}\right)-\left(\frac{5}{5.3}-\frac{3}{5.3}\right)-\left(\frac{3}{3.1}-\frac{1}{3.1}\right)\right]\)
\(=\frac{1}{2}.\left[\left(\frac{1}{97}-\frac{1}{99}\right)-\left(\frac{1}{95}-\frac{1}{97}\right)-\left(\frac{1}{93}-\frac{1}{95}\right)-\left(\frac{1}{3}-\frac{1}{5}\right)-\left(\frac{1}{1}-\frac{1}{3}\right)\right]\)
\(=\frac{1}{2}.\left[\frac{1}{97}-\frac{1}{99}-\frac{1}{95}+\frac{1}{97}-\frac{1}{93}+\frac{1}{95}-\frac{1}{3}+\frac{1}{5}-\frac{1}{1}+\frac{1}{3}\right]\)
\(=\frac{1}{2}.\left[-\frac{1}{99}-\frac{1}{93}+\frac{1}{5}-\frac{1}{1}\right]\)
\(A=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+....+\frac{10}{5^{10}}+\frac{11}{5^{11}}\)
\(\Rightarrow5A=1+\frac{2}{5}+\frac{3}{5^2}+....+\frac{10}{5^9}+\frac{11}{5^{10}}\)
\(\Rightarrow5A-A=\left(1+\frac{2}{5}+...+\frac{11}{5^{10}}\right)-\left(\frac{1}{5}+\frac{2}{5^2}+...+\frac{11}{5^{11}}\right)\)
\(\Rightarrow4A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{10}}-\frac{11}{5^{11}}\)(1)
Đặt \(B=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{10}}\)
\(\Rightarrow5B=5+1+\frac{1}{5}+...+\frac{1}{5^9}\)
\(\Rightarrow5B-B=\left(5+1+...+\frac{1}{5^9}\right)-\left(1+\frac{1}{5}+...+\frac{1}{5^{10}}\right)\)
\(\Rightarrow4B=5-\frac{1}{5^{10}}< 5\)
\(\Rightarrow B< \frac{5}{4}\)(2)
Thay (2) vào (1) \(\Rightarrow4A< \frac{5}{4}-\frac{11}{5^{11}}< \frac{5}{4}\)
\(\Rightarrow A< \frac{5}{16}\left(đpcm\right)\)
a, \(\frac{3}{4}-x=\frac{1}{2}\Leftrightarrow x=\frac{3}{4}-\frac{1}{2}=\frac{1}{4}\)Vậy \(x=\frac{1}{4}\)
b, \(\left|x+\frac{2}{3}\right|=\frac{5}{6}\)
TH1 : \(x+\frac{2}{3}=\frac{5}{6}\Leftrightarrow x=\frac{5}{6}-\frac{2}{3}=\frac{1}{6}\)
TH2 : \(x+\frac{2}{3}=-\frac{5}{6}\Leftrightarrow x=-\frac{5}{6}-\frac{2}{3}=\frac{-9}{6}=\frac{-3}{2}\)
Vậy \(x=\left\{\frac{1}{6};-\frac{3}{2}\right\}\)
a,\(\frac{3}{4}-x=\frac{1}{2}\)
\(\Leftrightarrow x=\frac{3}{4}-\frac{1}{2}\)
\(\Leftrightarrow x=\frac{1}{4}\)
b,\(\left|x+\frac{2}{3}\right|=\frac{5}{6}\)
\(\Leftrightarrow x+\frac{2}{3}=\pm\frac{5}{6}\)
TH1:\(x+\frac{2}{3}=\frac{5}{6}\)
\(\Leftrightarrow x=\frac{5}{6}-\frac{2}{3}\)
\(\Leftrightarrow x=\frac{1}{6}\)
TH2:\(x+\frac{2}{3}=-\frac{5}{6}\)
\(\Leftrightarrow x=-\frac{5}{6}-\frac{2}{3}\)
\(\Leftrightarrow x=-\frac{3}{2}\)
\(\left(x-\frac{1}{2}\right)^3=-8\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^3=\left(-2\right)^3\)
\(\Leftrightarrow x-\frac{1}{2}=-2\)
\(\Leftrightarrow x=-2+\frac{1}{2}=\frac{\left(-4\right)+1}{2}=-\frac{3}{2}\)