\(\dfrac{\sqrt{x}+2}{\sqrt{x}}\) ;B=\(\dfrac{x}{x-4}+\dfrac{1}{\sq...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2023

Ta có:

\(B=\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\) (ĐK: \(x\ne4;x\ge0\)

\(B=\dfrac{x}{\left(\sqrt{x}\right)^2-2^2}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\)

\(B=\dfrac{x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(B=\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(B=\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(B=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(B=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

\(\Rightarrow P=\dfrac{A}{B}=\dfrac{\dfrac{\sqrt{x}+2}{\sqrt{x}}}{\dfrac{\sqrt{x}}{\sqrt{x}-2}}=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\sqrt{x}\cdot\sqrt{x}}=\dfrac{x-4}{x}\) (ĐK: \(x\ne0\)

Theo đề ta có:

\(P\cdot x\le10\sqrt{x}-29-\sqrt{x}+25\) (ĐK: \(x\ge0\)

\(\Leftrightarrow\dfrac{x-4}{x}\cdot x\le9\sqrt{x}-4\)

\(\Leftrightarrow x-4\le9\sqrt{x}-4\)

\(\Leftrightarrow x-9\sqrt{x}\le0\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-9\right)\le0\)

Mà: \(\sqrt{x}\ge0\)

\(\Leftrightarrow\sqrt{x}-9\le0\)

\(\Leftrightarrow\sqrt{x}\le9\)

\(\Leftrightarrow x\le81\)

Kết hợp với đk:

\(0\le x\le81\)

2 tháng 1 2019

1.

a) \(\sqrt{3-2\sqrt{2}}+\sqrt{6-4\sqrt{2}}+\sqrt{9-4\sqrt{2}}=\sqrt{2-2\sqrt{2}+1}+\sqrt{4-2.2.\sqrt{2}+2}+\sqrt{8-2.2\sqrt{2}.1+1}=\sqrt{\left(\sqrt{2}\right)^2-2.\sqrt{2}.1+1^2}+\sqrt{2^2-2.2.\sqrt{2}+\left(\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{2}\right)^2-2.2\sqrt{2}.1+1^2}=\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{2}-1\right)^2}=\left|\sqrt{2}-1\right|+\left|2-\sqrt{2}\right|+\left|2\sqrt{2}-1\right|=\sqrt{2}-1+2-\sqrt{2}+2\sqrt{2}-1=2\sqrt{2}\)

b) \(\sqrt{\left(4+\sqrt{10}\right)^2}-\sqrt{\left(4-\sqrt{10}\right)^2}=\left|4+\sqrt{10}\right|-\left|4-\sqrt{10}\right|=4+\sqrt{10}-4+\sqrt{10}=2\sqrt{10}\)

c) \(\dfrac{1}{\sqrt{2013}-\sqrt{2014}}-\dfrac{1}{\sqrt{2014}-\sqrt{2015}}=\dfrac{\sqrt{2013}+\sqrt{2014}}{\left(\sqrt{2013}-\sqrt{2014}\right)\left(\sqrt{2013}+\sqrt{2014}\right)}-\dfrac{\sqrt{2014}+\sqrt{2015}}{\left(\sqrt{2014}-\sqrt{2015}\right)\left(\sqrt{2014}+\sqrt{2015}\right)}=\dfrac{\sqrt{2013}+\sqrt{2014}}{2013-2014}-\dfrac{\sqrt{2014}+\sqrt{2015}}{2014-2015}=-\left(\sqrt{2013}+\sqrt{2014}\right)+\sqrt{2014}+\sqrt{2015}=-\sqrt{2013}-\sqrt{2014}+\sqrt{2014}+\sqrt{2015}=\sqrt{2015}-\sqrt{2013}\)

2.

a) \(x^2-2\sqrt{5}x+5=0\Leftrightarrow x^2-2.x.\sqrt{5}+\left(\sqrt{5}\right)^2=0\Leftrightarrow\left(x-\sqrt{5}\right)^2=0\Leftrightarrow x-\sqrt{5}=0\Leftrightarrow x=\sqrt{5}\)Vậy S={\(\sqrt{5}\)}

b) ĐK:x\(\ge-3\)

\(\sqrt{x+3}=1\Leftrightarrow\left(\sqrt{x+3}\right)^2=1^2\Leftrightarrow x+3=1\Leftrightarrow x=-2\left(tm\right)\)

Vậy S={-2}

3.

a) \(A=\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}=\dfrac{\sqrt{x}\left(x\sqrt{x}-1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)=\sqrt{x}\left(\sqrt{x}-1\right)-2\sqrt{x}-1+2\sqrt{x}+2=x-\sqrt{x}+1\)

b) Ta có \(A=x-\sqrt{x}+1=x-2\sqrt{x}.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Ta có \(\left(\sqrt{x}-\dfrac{1}{2}\right)^2\ge0\Leftrightarrow\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\Leftrightarrow A\ge\dfrac{3}{4}\)

Dấu bằng xảy ra khi x=\(\dfrac{1}{4}\)

Vậy GTNN của A=\(\dfrac{3}{4}\)

a: \(=\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}=\sqrt{ab}-\sqrt{ab}=0\)

b: \(=\dfrac{\left(\sqrt{x}-2\sqrt{y}\right)^2}{\sqrt{x}-2\sqrt{y}}+\dfrac{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)

\(=\sqrt{x}-2\sqrt{y}+\sqrt{y}=\sqrt{x}-\sqrt{y}\)

c: \(=\sqrt{x}+2-\dfrac{x-4}{\sqrt{x}-2}\)

\(=\sqrt{x}+2-\sqrt{x}-2=0\)

1: \(=3\left(x+\dfrac{2}{3}\sqrt{x}+\dfrac{1}{3}\right)\)

\(=3\left(x+2\cdot\sqrt{x}\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{2}{9}\right)\)

\(=3\left(\sqrt{x}+\dfrac{1}{3}\right)^2+\dfrac{2}{3}>=3\cdot\dfrac{1}{9}+\dfrac{2}{3}=1\)

Dấu '=' xảy ra khi x=0

2: \(=x+3\sqrt{x}+\dfrac{9}{4}-\dfrac{21}{4}=\left(\sqrt{x}+\dfrac{3}{2}\right)^2-\dfrac{21}{4}>=-3\)

Dấu '=' xảy ra khi x=0

3: \(A=-2x-3\sqrt{x}+2< =2\)

Dấu '=' xảy ra khi x=0

5: \(=x-2\sqrt{x}+1+1=\left(\sqrt{x}-1\right)^2+1>=1\)

Dấu '=' xảy ra khi x=1

AH
Akai Haruma
Giáo viên
27 tháng 10 2018

\(A=\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-....-\frac{1}{\sqrt{24}-\sqrt{25}}\)

\(=\frac{\sqrt{1}+\sqrt{2}}{(\sqrt{1}-\sqrt{2})(\sqrt{1}+\sqrt{2})}-\frac{\sqrt{2}+\sqrt{3}}{(\sqrt{2}-\sqrt{3})(\sqrt{2}+\sqrt{3})}+\frac{\sqrt{3}+\sqrt{4}}{(\sqrt{3}-\sqrt{4})(\sqrt{3}+\sqrt{4})}-...-\frac{\sqrt{24}+\sqrt{25}}{(\sqrt{24}-\sqrt{25})(\sqrt{24}+\sqrt{25})}\)

\(=\frac{\sqrt{1}+\sqrt{2}}{-1}-\frac{\sqrt{2}+\sqrt{3}}{-1}+\frac{\sqrt{3}+\sqrt{4}}{-1}-...-\frac{\sqrt{24}+\sqrt{25}}{-1}\)

\(=\frac{(1+\sqrt{2})-(\sqrt{2}+\sqrt{3})+(\sqrt{3}+\sqrt{4})-...-(\sqrt{24}+\sqrt{25})}{-1}\)

\(=\frac{1-\sqrt{25}}{-1}=4\)

AH
Akai Haruma
Giáo viên
27 tháng 10 2018

\(B=\frac{5}{4+\sqrt{11}}+\frac{11-3\sqrt{11}}{\sqrt{11}-3}-\frac{4}{\sqrt{5}-1}+\sqrt{(\sqrt{5}-2)^2}\)

\(=\frac{5(4-\sqrt{11})}{(4+\sqrt{11})(4-\sqrt{11})}+\frac{\sqrt{11}(\sqrt{11}-3)}{\sqrt{11}-3}-\frac{4(\sqrt{5}+1)}{(\sqrt{5}-1)(\sqrt{5}+1)}+\sqrt{5}-2\)

\(=\frac{5(4-\sqrt{11})}{5}+\sqrt{11}-\frac{4(\sqrt{5}+1)}{4}+\sqrt{5}-2\)

\(=4-\sqrt{11}+\sqrt{11}-(\sqrt{5}+1)+\sqrt{5}-2\)

\(=1\)

5 tháng 7 2018

\(1.\) Gỉa sử : \(\sqrt{25-16}< \sqrt{25}-\sqrt{16}\)

\(\Leftrightarrow3< 1\) ( Vô lý )

\(\Rightarrow\sqrt{25-16}>\sqrt{25}-\sqrt{16}\)

\(2.\sqrt{a}-\sqrt{b}< \sqrt{a-b}\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2< a-b\)

\(\Leftrightarrow a-2\sqrt{ab}+b< a-b\)

\(\Leftrightarrow2b-2\sqrt{ab}< 0\)

\(\Leftrightarrow2\left(b-\sqrt{ab}\right)< 0\)

Ta có :\(a>b\Leftrightarrow ab>b^2\Leftrightarrow\sqrt{ab}>b\)

\(\RightarrowĐpcm.\)

\(2a.\) Áp dụng BĐT Cauchy , ta có :

\(a+b\ge2\sqrt{ab}\left(a;b\ge0\right)\)

\(\Leftrightarrow\dfrac{a+b}{2}\ge\sqrt{ab}\)

\(b.\) Áp dụng BĐT Cauchy cho các số dương , ta có :

\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{2}{\sqrt{xy}}\left(x,y>0\right)\left(1\right)\)

\(\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{2}{\sqrt{yz}}\left(y,z>0\right)\left(2\right)\)

\(\dfrac{1}{x}+\dfrac{1}{z}\ge\dfrac{2}{\sqrt{xz}}\left(x,z>0\right)\left(3\right)\)

Cộng từng vế của ( 1 ; 2 ; 3 ) , ta được :

\(2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge2\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)\)

\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\)

5 tháng 7 2018

\(3a.\sqrt{x-4}=a\left(a\in R\right)\left(x\ge4;a\ge0\right)\)

\(\Leftrightarrow x-4=a^2\)

\(\Leftrightarrow x=a^2+4\left(TM\right)\)

\(3b.\sqrt{x+4}=x+2\left(x\ge-2\right)\)

\(\Leftrightarrow x+4=x^2+4x+4\)

\(\Leftrightarrow x^2+3x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=-3\left(KTM\right)\end{matrix}\right.\)

KL....

4 tháng 8 2017

b) \(B=\dfrac{x-\sqrt{x}}{1-\sqrt{x}}-\dfrac{x\sqrt{x}}{\sqrt{x}}=\dfrac{\sqrt{x}\left(x-\sqrt{x}\right)-x\sqrt{x}\left(1-\sqrt{x}\right)}{\sqrt{x}\left(1-\sqrt{x}\right)}\) = \(\dfrac{x\sqrt{x}-x-x\sqrt{x}+x^2}{\sqrt{x}-x}=\dfrac{x^2-x}{\sqrt{x}-x}\)

c) \(C=\dfrac{x+2\sqrt{x}}{\sqrt{x}-x}-\dfrac{x\sqrt{x}}{\sqrt{x}+1}=\dfrac{\left(\sqrt{x}+1\right)\left(x+2\sqrt{x}\right)-x\sqrt{x}\left(\sqrt{x}-x\right)}{\left(\sqrt{x}-x\right)\left(\sqrt{x}+1\right)}=x+2\sqrt{x}-x\sqrt{x}\)

\(d,D=\dfrac{x+2\sqrt{x}}{\sqrt{x}+2}+\dfrac{5\sqrt{x}-2}{x-4}=\dfrac{x+2\sqrt{x}}{\sqrt{x}+2}+\dfrac{5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\) \(\dfrac{\left(x+2\sqrt{x}\right)\left(\sqrt{x}-2\right)+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\dfrac{x+7\sqrt{x}-2}{\sqrt{x}+2}\)

e) \(E=\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{\sqrt{x}-24}{x-9}=\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)+\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\) = \(\dfrac{2\sqrt{x}-24}{\sqrt{x}+3}\)

F) F = \(\dfrac{3}{\sqrt{x}+5}+\dfrac{20-2\sqrt{x}}{x-25}=\dfrac{3\left(\sqrt{x}-5\right)+20-2\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}=\dfrac{23-2\sqrt{x}}{\sqrt{x}+5}\)

4 tháng 8 2017

thanks p.... sorry mk chép nhầm đề câu e.

E= \(\dfrac{\sqrt{x}}{\sqrt{x}-3}\)+ \(\dfrac{2\sqrt{x}-24}{x-9}\)( x>0; x#9)

27 tháng 5 2017

Căn bậc hai. Căn bậc ba

Căn bậc hai. Căn bậc ba

4 tháng 8 2018

1. \(\dfrac{a+4\sqrt{a}+4}{\sqrt{a}+2}+\dfrac{4-a}{\sqrt{a}-2}\)

\(=\dfrac{\left(\sqrt{a}+2\right)^2}{\sqrt{a}+2}-\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\sqrt{a}-2}\)

\(=\sqrt{a}+2-\sqrt{a}-2\)

= 0

2: \(\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2-4\sqrt{xy}}{\sqrt{x}-\sqrt{y}}+\dfrac{y\sqrt{x}-x\sqrt{y}}{\sqrt{xy}}\)

\(=\sqrt{x}-\sqrt{y}+\sqrt{y}-\sqrt{x}=0\)

4: \(=\left(1+\sqrt{a}+\sqrt{a}+a\right)\cdot\dfrac{1}{1+\sqrt{a}}\)

\(=\dfrac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}+1}=\sqrt{a}+1\)

AH
Akai Haruma
Giáo viên
14 tháng 5 2018

Lời giải:

a)

Ta có: \(\frac{1}{\sqrt{3}+2}+\frac{1}{\sqrt{3}-2}=\frac{\sqrt{3}-2+\sqrt{3}+2}{(\sqrt{3}+2)(\sqrt{3}-2)}=\frac{2\sqrt{3}}{3-4}=-2\sqrt{3}\)

Để \(B=\frac{1}{\sqrt{3}+2}+\frac{1}{\sqrt{3}-2}\Leftrightarrow \frac{2}{\sqrt{x}-2}=-2\sqrt{3}\)

\(\Leftrightarrow \frac{1}{\sqrt{x}-2}=-\sqrt{3}\)

\(\Leftrightarrow\sqrt{x}-2=\frac{-1}{\sqrt{3}}\)

\(\Leftrightarrow \sqrt{x}=2-\frac{1}{\sqrt{3}}\Rightarrow x=(2-\frac{1}{\sqrt{3}})^2=\frac{13-4\sqrt{3}}{3}\)

b)

ĐK: \(x\geq 0; x\neq 4\)

\(A=\frac{\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}=\frac{\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{(\sqrt{x}-2)(\sqrt{x}+2)}=\frac{\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{x-4}=\frac{2\sqrt{x}+2}{x-4}\)

\(P=\frac{B}{A}=\frac{2}{\sqrt{x}-2}:\frac{2(\sqrt{x}+1)}{x-4}=\frac{2(x-4)}{2(\sqrt{x}-2)(\sqrt{x}+1)}\)

\(=\frac{(\sqrt{x}+2)(\sqrt{x}-2)}{(\sqrt{x}-2)(\sqrt{x}+1)}=\frac{\sqrt{x}+2}{\sqrt{x}+1}\)

 

 

AH
Akai Haruma
Giáo viên
14 tháng 5 2018

c) Thêm ĐK: \(x\geq 1\)

Từ biểu thức P vừa tìm được:

\(P(\sqrt{x}+1)-\sqrt{x}+2\sqrt{x-1}=2x-2\sqrt{2x}+4\)

\(\Leftrightarrow \frac{\sqrt{x}+2}{\sqrt{x}+1}.(\sqrt{x}+1)-\sqrt{x}+2\sqrt{x-1}=2x-2\sqrt{2x}+4\)

\(\Leftrightarrow \sqrt{x}+2-\sqrt{x}+2\sqrt{x-1}=2x-2\sqrt{2x}+4\)

\(\Leftrightarrow 2\sqrt{x-1}=2x-2\sqrt{2x}+2\)

\(\Leftrightarrow (\sqrt{x-1}-1)^2+(\sqrt{x}-\sqrt{2})^2=0\)

\((\sqrt{x-1}-1)^2, (\sqrt{x}-\sqrt{2})^2\geq 0, \forall x\in \text{ĐKXĐ}\)

\(\Rightarrow (\sqrt{x-1}-1)^2+(\sqrt{x}-\sqrt{2})^2\geq 0\). Dấu bằng xảy ra khi :

\(\left\{\begin{matrix} \sqrt{x-1}-1=0\\ \sqrt{x}-\sqrt{2}=0\end{matrix}\right.\Leftrightarrow x=2\) (thỏa mãn)

Vậy..........