Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(A=1+2+2^2+2^3+......+2^{2015}\)
\(\Leftrightarrow2A=2+2^2+2^3+......+2^{2016}\)
\(\Leftrightarrow2A-A=\left(2+2^2+2^3+......+2^{2016}\right)-\left(1+2+2^2+2^3+......+2^{2015}\right)\)
\(\Leftrightarrow A=2^{2016}-1\)
Vậy \(A=2^{2016}-1\)
6)Ta có: \(13+23+33+43+.......+103=3025\)
\(\Leftrightarrow2.13+2.23+2.33+2.43+.......+2.103=2.3025\)
\(\Leftrightarrow26+46+66+86+.......+206=6050\)
\(\Leftrightarrow\left(23+3\right)+\left(43+3\right)+\left(63+3\right)+\left(83+3\right)+.......+\left(203+3\right)=6050\)
\(\Leftrightarrow23+43+63+83+.......+203+3.10=6050\)
\(\Leftrightarrow23+43+63+83+.......+203+=6050-30\)
\(\Leftrightarrow23+43+63+83+.......+203+=6020\)
Vậy S=6020
b, B có 19 thừa số
=> \(-B=(1-\frac{1}{4})(1-\frac{1}{9})(1-\frac{1}{16})...(1-\frac{1}{400}) \)
<=>\(-B=\frac{(2-1)(2+1)(3-1)(3+1)(4-1)(4+1)...(20-1)(20+1)}{4.9.16...400} \)
<=>\(-B=\frac{(1.2.3.4...19)(3.4.5...21)}{(2.3.4.5.6...20)(2.3.4.5...20)} \)
<=>\(-B=\frac{21}{20.2} =\frac{21}{40} \)
<=>\(B=\frac{-21}{40} \)
\(N=4\cdot16\cdot\dfrac{9}{16}\cdot\dfrac{4}{5}\cdot\dfrac{27}{8}=4\cdot9\cdot\dfrac{4}{5}\cdot\dfrac{27}{8}\)
\(=\dfrac{16}{5}\cdot\dfrac{243}{8}=\dfrac{486}{5}\)
\(\cos\dfrac{\pi}{15}.\cos\dfrac{2\pi}{15}...\cos\dfrac{7\pi}{15}=-\dfrac{1}{2}.\left(\cos\dfrac{\pi}{15}.\cos\dfrac{2\pi}{15}.\cos\dfrac{4\pi}{15}.\cos\dfrac{8\pi}{15}\right).\left(\cos\dfrac{3\pi}{15}.\cos\dfrac{6\pi}{15}\right)\)
\(=-\dfrac{1}{2}.\left(\cos\dfrac{\pi}{15}.\cos\left(2.\dfrac{\pi}{15}\right).\cos\left(2^2.\dfrac{\pi}{15}\right).\cos\left(2^3\dfrac{\pi}{15}\right)\right).\left(\cos\dfrac{3\pi}{15}.\cos\left(2.\dfrac{3\pi}{15}\right)\right)\)
\(=-\dfrac{1}{2}.\left(\dfrac{\sin\left(2^4.\dfrac{\pi}{15}\right)}{16.\sin\left(\dfrac{\pi}{15}\right)}\right).\left(\dfrac{\sin\left(2^2\dfrac{3\pi}{15}\right)}{4.\sin\left(\dfrac{3\pi}{15}\right)}\right)\)
\(=-\dfrac{1}{2}.\left(\dfrac{\sin\left(\dfrac{16\pi}{15}\right)}{16.\sin\left(\dfrac{\pi}{15}\right)}\right).\left(\dfrac{\sin\left(\dfrac{12\pi}{15}\right)}{4.\sin\left(\dfrac{3\pi}{15}\right)}\right)\)
\(=-\dfrac{1}{2}.\left(\dfrac{-\sin\left(\dfrac{\pi}{15}\right)}{16.\sin\left(\dfrac{\pi}{15}\right)}\right).\left(\dfrac{\sin\left(\dfrac{3\pi}{15}\right)}{4.\sin\left(\dfrac{3\pi}{15}\right)}\right)=\dfrac{1}{128}\)
\(A=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}}{\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}\right)-\dfrac{1}{2}.\dfrac{1}{3}.\dfrac{1}{4}}\)
\(\Rightarrow A=\dfrac{1}{1-\dfrac{1}{2}.\dfrac{1}{3}.\dfrac{1}{4}}\) ( Lượt \(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}\) ở tử và mẫu )
\(\Rightarrow A=\dfrac{1}{1-\dfrac{1}{24}}\)
\(\Rightarrow A=\dfrac{1}{\dfrac{23}{24}}=\dfrac{24}{23}\)
Vậy \(A=\dfrac{24}{23}\)
áp dụng cô si ta có :
\(\dfrac{1}{2a+b}+\dfrac{1}{2b+c}+\dfrac{1}{2c+a}\ge\dfrac{\left(1+1+1\right)^2}{2a+b+2b+c+2c+a}\)
\(=\dfrac{9}{3\left(a+b+c\right)}=\dfrac{3}{a+b+c}\)
\(\left(x^2-y^2\right)^2=\left(x-y\right)^2\left(x+y\right)^2\) \(\Rightarrow\left\{{}\begin{matrix}x;y>0\\x+y< 1\end{matrix}\right.\)=> dccm sai = > người ra đề sai họăc người chép đề sai ;
A=\(\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot\dfrac{15}{16}\)=\(\dfrac{5}{3}\)=0.625
0.625 > 8998
like cho mình nha!