\(CMR:\frac{a+2c}{b+2d}\)\(=\frac{3a+c}{3b+d}\)

B)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2020

a) \(\hept{\begin{cases}\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a-3b}{5c-3d}\\\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{3a}{3c}=\frac{2b}{2d}=\frac{3a+2b}{3c+2d}\end{cases}}\)

\(\Rightarrow\frac{5a-3b}{5c-3d}=\frac{3a+2b}{3c+2d}\)

\(\Rightarrow\frac{5a-3b}{3a+2b}=\frac{5c-3d}{3c+2d}\)

b) Chứng minh tương tự 

6 tháng 9 2020

ko biet nghen

4 tháng 8 2017

Áp dụng tính chất DTS bằng nhau: 

   \(\frac{a}{b}=\frac{c}{d}=\frac{3a}{3b}=\frac{2c}{2d}=\frac{3a+2c}{3b+2d}\)

\(\frac{a}{b}=\frac{c}{d}=\frac{-5a}{-5b}=\frac{3c}{3d}=\frac{-5a+3c}{-5b+3d}\)

Vậy....

24 tháng 7 2017

Tự tl v!

Áp dụng tính chất DTS bằng nhau ,ta có: 

  \(\frac{a}{b}=\frac{3a}{3b}=\frac{2c}{2d}=\frac{3a+2c}{3b+2d}\)

\(\frac{a}{b}=\frac{-5a}{-5b}=\frac{3c}{3d}=\frac{-5a+3c}{-5b+3d}\)

Vậy....

10 tháng 8 2017

con này max dễ

27 tháng 10 2019

chứng minh hả ok

A)\(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{3}{3}.\frac{c}{d}\)(vì \(\frac{3}{3}=1\)mà một số a nhân với 1 thì bằng chính nó)

áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{a}{b}=\frac{3c}{3d}=\frac{a+3c}{a+3d}\)

\(\RightarrowĐpcm\)

27 tháng 10 2019

b)\(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{3}{3}.\frac{a}{b}=\frac{2}{2}.\frac{c}{d}\)

\(\Rightarrow\frac{3a}{3b}=\frac{2c}{2d}\)

áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{3a}{3b}=\frac{2c}{2d}=\frac{3a-2c}{3b-2d}\)

\(\RightarrowĐpcm\)

21 tháng 1 2018

Áp dụng TCDTSBN ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\) (vì a+b+c+d khác 0)

=>a=b=c=d

=>M=\(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{1}{2}\cdot4=2\)

23 tháng 1 2018

Ta có:a/b=b/c=c/d=d/a

Áp dụng tính chất dãy tỉ số bằng nhau, ta được:a/b=b/c=c/d=(a+b+c+d)/(b+c+d+a)=1

=>a=b=c=d(vì a/b=b/c=c/d=d/a=1)

Thay vào M sau đó tìm được M=2