Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Gọi d là ước chung của tử và mẫu
=> 12n + 1 chia hết cho d 60n + 5 chia hết cho d
=>
30n +2 chia hết cho d 60n + 4 chia hết cho d
=> ( 60n + 5 ) - ( 60n + 4 ) chia hết cho d
=> 1 chia hết cho d
=> d = 1 => ( đpcm )
Câu a) làm rồi mình làm câu b) nhé
\(b)\)Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
Ta có :
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}< 1\)
Vậy \(A< 1\)
a, Đặt ƯCLN(12n+1 ; 30n + 2) = d
=> 12n + 1 chia hết cho d và 30n + 2 chia hết cho d
=> 5.(12n + 1) - 2.(30n + 2) = 60n + 5 - 60n + 4 = 1 chia hết cho d
=> d thuộc Ư(1) <=> d = 1
Do đó suy ra điều phải chứng tỏ
câu a
Gọi ƯCLN (12n+1,30n+2) là d
⇒(12n+1)⋮d
(30n+2)⋮d
⇒5(12n+1)−2(30n+2)⋮d
⇒60n+5−60n−4⋮d
⇒1⋮d⇔d=1
Vậy ƯCLN (12n+1,30n+2)=1⇔12n+1/30n+2 là p/s tối giản
a) Đặt UCLN(12n + 1 ; 60n + 2) = d
12n + 1 chia hết cho d
=> 60n + 5 chia ehets cho d
30n + 2 chia hết cho d
60n + 4 chia hết cho d
< = > 1 chia hết cho d => d = 1
a)
gọi ước chung lon nhat của 12n+1 va30n+2 là d
12n+1chia hết cho d và 30n+2 chia hết cho d
suy ra 5(12n+1) chia hết cho d và 2(30n+2) chia hết cho d
suy ra 60n+5 chia hết cho d và 60n+4 chia hết cho d
vậy (60n+5)-(60n+4) chia hết cho d
1 chia hết cho d
vậy ước chung lớn nhất của 12n+1 va 30n+2
suy ra phân số 12n+1/30n+2la phân số tối giản
1/2^2+1/3^2+1/4^2+..+1/100^2
1/2^2<1/1.2=1-1/2
1/3^2<1/2.3=1/2-1/3
1/4^2<1/3.4=1/3-1/4
.......
1/100^2<1/1/99.100=1/99-1/100
1/2^2+1/3^2+1/4^2+...+1/100^2<1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
1/2^2+1/3^2+1/4^2+..+1/100^2<1-1/100=99/100<1 (đpcm)
bài 2 :
a, abcdeg = ab.10000 + cd.100 + eg
= ab.9999 + ab + cd.99 + cd + eg
= (ab.9999 + cd.99) + (ab+cd+eg)
vì 9999 chia hết cho 11 => ab.9999 chia hết cho 11 (1)
99 chia hết cho 11 => cd.99 chia hết cho 11 (2)
theo đề bài (ab+cd+eg) chi hết cho 11 (3)
(1)(2)(3) => abcdeg chia hết cho 11
phần b thì bạn chứng minh 10^28 + 8 chi hết cho 8 và 9 là được
Đặt ƯCLN(3n-2;4n-3)=d => 3n-2 chia hết cho d và 4n-3 chia hết cho d
=>4(3n-2) chia hết cho d và 3(4n-3) chia hết cho d
=>12n-8 chia hết cho d và 12n-9 chia hết cho d
=>(12n-8)-(12n-9) chia hết cho d
=>1 chia hết cho d
=>d=1
ƯCLN(3n-2;4n-3)=1 => phân số \(\frac{3n-2}{4n-3}\) tối giản
Đặt ƯCLN(4n+1;6n+1)=m => 4n+1 chia hết cho m và 6n+1 chia hết cho m
=>3(4n+1) chia hết cho m và 2(6n+1) chia hết cho m
=>12n+3 chia hết cho m và 12n+2 chia hết cho m
=>(12n+3)-(12n+2) chia hết cho m
=>1 chia hết cho m
=>m=1
ƯCLN(3n-2;4n-3)=1 => phân số \(\frac{4n+1}{6n+1}\) tối giản
Phân số \(\frac{n}{n+1}\) là phân số tối giản rồi bạn nhé
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1-\frac{1}{100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1\)
b) gọi dãy là A ta có:
\(\frac{1}{2^2}\)<\(\frac{1}{1.2}\)
\(\frac{1}{3^2}\)<\(\frac{1}{2.3}\)
.
............
...........
\(\frac{1}{100^2}\)<\(\frac{1}{99.100}\)
đặt D=\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+.......+\(\frac{1}{99.100}\)
D=1-1/2+1/2-1/3+.......+1/99-1/100
D=1-1/100=99/100
vì A <D => A<1
K NHA