Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : (a-b)^2 >= 0
<=> a^2-2ab+b^2 >= 0
<=> a^2-2ab+b^2+2ab >= 0 + 2ab
<=> a^2+b^2 >= 2ab
Áp dụng bđt trên thì A >= \(2\sqrt{a.1}+2\sqrt{b.1}\) = \(2\sqrt{a}+2\sqrt{b}\)>= \(2\sqrt{2\sqrt{a}.2\sqrt{b}}\)
= \(2\sqrt{4.\sqrt{ab}}\)= \(2\sqrt{4.1}\)= 4
=> ĐPCM
Dấu "=" xảy ra <=> a=b=1
Tk mk nha
A = ( a+1)(b+1)
= ab + a + b + 1
= 1 + 1 + 1 + 1
= 4
vì ab = 1 nên a\(\ge\)1
b\(\ge\)1
dấu bằng xảy ra khi a=b=1
ta có
A = ( a+1)(b+1)
= ab + a + b + 1
= 1 + 1 + 1 + 1
= 4
giải thích
vì ab = 1 nên a>=1
b>=1
dấu bằng xảy ra khi a=b=1
vì -1 hơn 1 hai số cho nên;
a) a/b và c/d ^2 =ab/cd hơn kém nhau 2
b) dựa theo tính chất kết hợp (a+b/c+d ) ^3 = a ^3 ...
a,a+b+c=0 <=>c=-a-b
Khi đ f(x)=ax^2+bx-a-b
f(x)=a(x^2-1)+b(x-1)=(x-1)(ax+a+b)
=>f(x) có nghiệm x=1
b,a-b+c=0 <=>c=b-a
Khi đó f(x)=ax^2+bx+b-a
f(x)=a(x^2-1)+b(x+1)=(x+1)(ax-a+b)
=>f(x) có nghiệm x=-1
Vì a+b<a+b+c=>a/a+b>a/a+b+c
Vì b+c<a+b+c=>b/b+c>b/a+b+c
Vì c+a<a+b+c=>c/c+a>c/a+b+c
=>a/a+b+b/b+c+c/c+a>a/a+b+c+b/a+b+c+c/a+b+c=(a+b+c)/(a+b+c)=1
=>a/a+b+b/b+c+c/c+a>1
=>ĐPCM
a,
vì (a-b)2>=0(luon dung)
=>a2-2ab+b2>=0
=>a2+b2>=2ab