K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2017

Lê Minh Tuấn bn tham khảo nha:

 a+b+c+d=0 
=>a+b=-(c+d) 
=> (a+b)^3=-(c+d)^3 
=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d) 
=> a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d) 
=> a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d)) 
==> a^3 +b^^3+c^3+d^3==3(c+d)(ab-cd) (dpcm)

21 tháng 9 2017

cảm ơn OoO Ledegill2 OoO

30 tháng 11 2017

b2 = ac \(\Rightarrow\frac{a}{b}=\frac{b}{c}\)( 1 )

c2 = bd \(\Rightarrow\frac{b}{c}=\frac{c}{d}\)( 2 )

Từ ( 1 ) và ( 2 ) suy ra : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

từ \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)\(\Rightarrow\)\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\left(\frac{a+b+c}{b+c+d}\right)^3\)

Vậy ...

30 tháng 11 2017

minh moi dang cau moi giup minh dc khong

8 tháng 8 2018

b^2=ac= >a/b=b/c ; c^3=bd= >b/c=c/d

=> a/b=b/c=c/d= >a^3/b^3=b^3/c^3=c^3/d^3=(a^3+b^3+c^3)/(b^3+c^3+d^3) 

mà a^3/b^3=a/b.a/b.a/b=a/b.b/c.c/d=a/b

nên (a^3+b^3+c^3)/(b^3+c^3+d^3)=a/b

4 tháng 10 2019

vì -1 hơn 1 hai số cho nên;

a) a/b và c/d ^2 =ab/cd hơn kém nhau 2

b) dựa theo tính chất kết hợp (a+b/c+d ) ^3 = a ^3 ...