K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

cho tứ giác ABCD. Gọi M,N,P,Q lần lượt là tđ của AB,BC,CD,DA.

a) tứ giác MNPQ là hình gì ? vì sao?

MN//BD; PQ//BD

NP//AC; QM//AC

=>MN//PQNP//QNMNPQ la hbbh

Xét ΔBAC có M,N lần lượt là trung điểm của BA,BC

=>MN là đường trung bình

=>MN//AC và MN=AC/2

Xét ΔDAC có

Q,P lần lượt là trung điểm của DA,DC

=>QP là đường trung bình

=>QP//AC và QP=AC/2

=>MN//PQ và MN=PQ

Xét ΔABD có AM/AB=AQ/AD

nên MQ//BD

=>MQ vuông góc AC

mà MN//AC

nên MQ vuông góc MN

Xét tứ giác MNPQ có

MN//PQ

MN=PQ

Do đó: MNPQ là hình bình hành

mà góc QMN=90 độ

nên MNPQ là hình chữ nhật

4 tháng 3 2015

* Hướng dẫn câu b:

Gọi I là giao điểm của Gx và PQ. Kéo dài PQ cắt hai cạnh AD và BC theo thứ tự là E và F.

Góc MPQ = góc GEF (so le trong do MP // AD)

Góc MQP = góc GFE (so le trong do MQ // BC)

góc MPQ = góc MQP (tam giác MPQ cân do MP = MQ)

=> góc GEF = góc GEF -> tam giác GEF cân tại G

mà GI là phân giác của góc G -> GI vuông góc với EF

-> Gx vuông góc với PQ -> Gx // MN (MN vuông góc với PQ do hình thoi có 2 đường chéo vuông góc).

5 tháng 11 2017

Ta có thể tìm các bội của một số khác 0 bằng cách nhân số đó lần lược cho 1, 2, 3, …

Ví dụ :

B(5) = {5.1, 4.2, 5.3, …} = {5, 10, 15, …}

Ta có thể tìm các ước của một số a (a > 1) bằng cách lần lược chia số a cho số tự nhiên từ 1 đến a để xét xem a chia hết cho những số nào, khi đó các số ấy là ước của a.

1: Xét ΔABC có BM/BA=BN/BC=1/2

nên MN//AC và MN=1/2AC

Xét ΔADC có DP/DC=DQ/DA

nên QP//AC và QP/AC=DP/DC=1/2

=>QP=1/2AC

=>MN//PQ và MN=PQ

Xét ΔABD có AM/AB=AQ/AD=1/2

nên MQ/BD=AM/AB=1/2

=>MQ=1/2BD

Xét ΔCBD có CP/CD=CN/CB=1/2

nên NP=1/2BD

=>MQ=NP=1/2BD

mà BD=AC

nên MQ=NP=QP=MN

2: Xét tứ giác MNPQ có

MN//PQ

MN=PQ

MN=MQ

=>MNPQ là hình thoi

25 tháng 7 2023

cảm ơn bạn nhiều nha 

a: Xét ΔBAD có

M,Q lần lượt là tđiểm của AB và AD

nên MQ là đường trung bình

=>MQ//BD và MQ=BD/2(1)

Xét ΔBCD có

N,P lần lượt là trung điểm của CB và CD

nên NP là đường trung bình

=>NP//BD và NP=BD/2(2)

Xét ΔABC có

M,N lần lượt là trung điểm của BA và BC

nên MN là đường trung bình

=>MN=AC/2 và MN//AC

=>MN vuông góc với BD

=>MN vuông góc với MQ(3)

Từ (1) và (2) suy ra MNPQ là hình bình hành(4)

Từ (3) và (4) suy ra MNPQ là hình chữ nhật