
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a)(a2+b2+c2)2- (a2-b2-c2)2 = ((a2)+(b2)+(c2) + 2ab + 2ac+2bc)2-((a2)+(b2)+(c2)-2ab-2ac+2c)2
=4ab +4ac
b)(a+b+c)2- (a-b-c)2-4ac = (a2+b2+c2+2ab+2ac+2bc) - (a2+b2+c2- 2ab - 2ac +2bc)
= (2ab + 2ac) - [(-2ab) - 2ac)=..........
c)(a+b+c)2-(a+b)2- (a+c)2- (b+c)2= (a2+b2+c2+2ab+2ac+2bc)-(a2+b2+2ab)-(a2+c2+2ac)-(b2+c2+2bc)
= a2 + b2 + c2
d)(a+b+c)2+(a-b+c)2+(a+b-c)2+(-a+b+c)2 = (a2+b2+c2+2ab+2ac+2bc) +(a2+b2+c2-2ab-2ac+2bc)+(a2+b2+c2+2ab-2ac-2bc)+(a2+b2+c2-2ab-2ac+2bc) = 4a2+4b2+4c2- 4ac +4bc
Mình không biết đúng hay sai đâu nha mình chỉ làm theo hiểu biết vì mình mới học lớp 7 thui!!!!!!!!!

h) (x+1)(x+4)(x+2)(x+3) - 24
= (x2+4x+x+4)(x2+3x+2x+6)-24
=(x2+5x+5-1)(x2+5x+5+1)-24
=(x2+5x+5)2 -12 -24
=(x2+5x+5)2 -25
=(x2+5x+5)2 -52
=(x2+5x+5-5)(x2+5x+5+5)
=(x2+5x)(x2+5x+10)
i) 4(x2+5x+10x+50)(x2+6x+12x+72)-3x2
=4[x(x+5)+10(x+5)].[x(x+6)+12(x+6)]- 3x2
=4(x+10)(x+5)(x+12)(x+6)-3x2
=4(x+10)(x+6)(x+12)(x+5)-3x2
=4(x2+6x+10x+60)(x2+5x+12x+60)-3x2
=4(x2+16x+60)(x2+17x+60)-3x2
Đặt (x2+16x+60) = a
Ta có: 4a(a+x)-3x2
=4a2+4ax -3x2
=(2a)2 + 2.2a.x +x2 -4x2
= [ (2a) +x]2 - (2x)2
= [ (2a) +x -2x].[(2a) + x +2x)]
=[ (2a) -x].[(2a) + 3x)]
sau đó ta thế a = (x2+16x+60) rồi rút gọn là xong ^^

a) (a + b + c + d)(a - b - c - d)
= a(a + b + c + d) - b(a + b + c + d) - c(a + b + c + d) - d(a + b + c + d)
= (aa + ab + ac + ad) - (ba + bb + bc + bd) - (ca + cb + cc + cd) - (da + db + dc + dd)
= aa - bb - cc - dd

a: \(\left(ax-by\right)^2+\left(bx+ay\right)^2\)
\(=a^2x^2-2axby+b^2y^2+b^2x^2+2abxy+a^2y^2\)
\(=a^2\left(x^2+y^2\right)+b^2\left(x^2+y^2\right)\)
\(=\left(x^2+y^2\right)\left(a^2+b^2\right)\)
c: \(a^2+2ab+b^2-c^2\)
\(=\left(a+b\right)^2-c^2\)
\(=\left(a+b+c\right)\left(a+b-c\right)\)
\(=4m\cdot\left(4m-2c\right)\)
\(=16m^2-8mc\)

a) ( 2x + 3 )2 - 2( 2x + 3 )( 2x + 5 ) + ( 2x + 5 )2
= [ ( 2x + 3 ) - ( 2x + 5 ) ]2
= ( 2x + 3 - 2x - 5 )2
= (-2)2 = 4
b) ( x2 + x + 1 )( x2 - x + 1 )( x2 - 1 )
= ( x4 - x3 + x2 + x3 - x2 + x + x2 - x + 1 )( x2 - 1 )
= ( x4 + x2 + 1 )( x2 - 1 )
= x6 - x4 + x4 - x2 + x2 - 1
= x6 - 1
c) ( x + y )2 + ( x - y )2
= x2 + 2xy + y2 + x2 - 2xy + y2
= 2x2 + 2y2 = 2( x2 + y2 )
d) 2( x - y )( x + y ) + ( x + y )2 + ( x - y )2
= [ ( x + y ) + ( x - y ) ]2
= ( x + y + x - y )2
= ( 2x )2 = 4x2
e) ( x - y + z )2 + ( z - y )2 + 2( x - y + z )( y - z )
= ( x - y + z )2 + ( z - y )2 - 2( x - y + z )( z - y )
= [ ( x - y + z ) - ( z - y ) ]2
= ( x - y + z - z + y )2
= x2
f) ( a + b - c )2 + ( a - b + c )2 - 2( b - c )2
= [ ( a + b ) - c ]2 + [ ( a - b ) + c ]2 - 2( b2 - 2bc + c2 )
= [ ( a + b )2 - 2( a + b )c + c2 ] + [ ( a - b )2 + 2( a - b )c + c2 ] - 2b2 + 4bc - 2c2
= a2 + b2 + c2 + 2ab - 2bc - 2ca + c2 + a2 + b2 + c2 - 2ab + 2bc + 2ac - 2b2 + 4bc - 2c2
= 2a2
g) ( a + b + c )2 + ( a - b - c )2 + ( b - c - a )2 + ( c - a - b )2
= [ ( a + b ) + c ]2 + [ ( a - b ) - c ]2 + [ ( b - c ) - a ]2 + [ ( c - a ) - b ]2
= [ ( a + b )2 + 2( a + b )c + c2 ] + [ ( a - b )2 - 2( a - b )c + c2 ] + [ ( b - c )2 - 2( b - c )a + a2 ] + [ ( c - a )2 - 2( c - a )b + b2 ]
= [ a2 + b2 + c2 + 2ab + 2bc + 2ca ] + [ a2 + b2 + c2 - 2ab + 2bc - 2ca ] + [ a2 + b2 + c2 - 2ab - 2bc + 2ca ] + [ a2 + b2 + c2 + 2ab - 2bc - 2ca ]
= 4a2 + 4b2 + 4c2
Có vẻ hơi dài dòng nhỉ :( Nhưng như này là kĩ nhất đấy :)

Tính: (a+b+c)2 +(b+c-a)2 + (c+a-b)2 + (a+b-c)2
=(a^2+b^2+c^2+2ab+2ac+2bc)+(a^2+b^2+c^2-2ab-2ac+2bc)+(a^2+b^2+c^2-2ab+2ac-2bc)+(a^2+b^2+c^2+2ab-2ac-2bc)
= a^2+b^2+c^2+2ab+2ac+2bc+a^2+b^2+c^2-2ab-2ac+2bc+(a^2+b^2+c^2-2ab+2ac-2bc+a^2+b^2+c^2+2ab-2ac-2bc
= 2a^2+2b^2+2c^2
Chứng minh bằng nhau :
[(a-b)+c]2 = 3ab +3ac +3bc
Ta có:
[(a-b)+c]^2
=(a-b)^2+2*(a-b)*c+c^2
=(a-b)^2+2c*(a-b)+c^2
=a^2-2ab+b^2+2ac-2bc+c^2
=3ab+3ac+3bc

b1: ta có: a^2+b^2 >0 ; b^2 +c^2>0 ; c^2 +a^2>0
=> \(a^2+b^2\ge2\sqrt{a^2.b^2}\) (BĐT cau chy)
\(b^2+c^2\ge2\sqrt{b^2.c^2}\) (BĐT cau chy)
\(c^2+a^2\ge2\sqrt{c^2.a^2}\)(BĐT cauchy)
=>\(\left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right)\ge8a^2.b^2.c^2\)
Dấu '= xảy ra khi a=b=c (đpcm)

cau 1 ne:
a^2 + b^2 + c^2 + 3
theo bat dang thuc cosi ban se co
a^2 + a + 1 >= 3a
b^2 + b + 1 >= 3b
c^2 + c + 1 >= 3c
cong 3 ve bat dang thuc lai voi nhau ban se co
a^2 + b^2 + c^2 + (a + b + c) + 3>= 3(a + b + c)
=> a^2 + b^2 + c^2 + 3 >= 2(a + b + c)
dau = xay ra <=> a= b= c = 1
ma theo de bai ta lai co a^2 + b^2 + c^2 + 3 = 2(a + b + c)
=> a = b = c = 1 (dpcm)
b) (a - b)^2 + (b-c)^2 + (c - a)^2 = (a + b - 2c)^2 + (b + c - 2a)^2 + (c + a - 2b)^2
hay (a + b - 2b)^2 + (b + c - 2c)^2 + (c + a - 2a)^2 = (a + b - 2c)^2 + (b + c - 2a)^2 + (c + a - 2b)^2
dat. a + b = A
b + c = B
c + a = C
=> ban se co:
(A - 2b)^2 + (B - 2c)^2 + (C - 2a)^2 = (A - 2c)^2 + (B - 2a)^2 + (C - 2b)^2
tu day ban nhan pha ra roi rut gon 2 ve cho nhau ban se co
Ab + Bc + Ca = Ac + Ba + Cb
hay (a + b)b + (b + c)c + (c + a)a = (a + b)c + (b + c)a + (c + a)b
hay ab + b^2 + bc + c^2 + ac + a^2 = 2ab + 2bc + 2ac
hay a^2 + b^2 + c^2 - ab - bc - ac = 0
hay 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ac = 0
hay (a-b)^2 + (b-c)^2 +(c - a)^2 = 0
dau = xay ra <=> a = b = c (dpcm)
c) a^3 + b^3 + c^3 + d^3 = (a + b)(a^2 -ab +b^2) + (c+d)(c^2 - cd + d^2) (**)
ban nhan thay a + b + c + d = 0
=> a + b = - c - d
thay vao pt (**) ban se co
-(c + d)(a^2 - ab + b^2) + (c + d)(c^2 - cd + d^2)
(c + d)(c^2 - cd + d^2 -a^2 + ab - b^2)
hay (c + d)(ab - cd + (c^2 + d^2 - a^2 - b^2)) (***)
ban co a + b = - c - d
hay (a + b)^2 = (c + d)^2
hay a^2 + b^2 + 2ab = c^2 + d^2 + 2cd
hay c^2 + d^2 - a^2 - b^2 = 2ab - 2cd
thay vao pt (***) ban se co
(c + d)(ab - cd + 2ab - 2cd)
hay (c +d)(3ab - 3cd) = 3(c+d)(ab - cd) (dpcm)
Khai triển: \(\left(a+b+c\right)^2+\left(a+b-c\right)^2\)
\(=a^2+b^2+c^2+2\left(ab+bc+ca\right)+a^2+b^2+c^2+2\left(ab-bc-ca\right)\)
\(=2a^2+2b^2+2c^2+4ab\)
( a + b + c )2 + ( a + b - c )2
= [ ( a + b ) + c ]2 + [ ( a + b ) - c ]2
= [ ( a + b )2 + 2( a + b )c + c2 ] + [ ( a + b )2 - 2( a + b )c + c2 ]
= a2 + b2 + c2 + 2ab + 2bc + 2ca + a2 + b2 + c2 + 2ab - 2bc - ca
= 2a2 + 2b2 + 2c2 + 4ab
= 2( a2 + b2 + 2ab + c2 )
= 2[ ( a + b )2 + c2 ]