Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+4b+4=0\)
\(b^2+4c+4=0\)
\(c^2+4a+4=0\)
\(=>a^2+4b+4+b^2+4c+4+c^2+4a+4=0\)
\(=>\left(a+2\right)^2+\left(b+2\right)^2+\left(c+2\right)^2=0\)
\(=>a+2=b+2=c+2=0\)
\(=>a=b=c=-2\)
\(=>a^{10}+b^{10}+c^{10}=\left(-2\right)^{10}+\left(-2\right)^{10}+\left(-2\right)=3.\left(-2\right)^{10}=3072\)
Cộng vế với vế giả thiết:
\(a^2+4b+4+b^2+4c+4+c^2+4a+4=0\)
\(\Leftrightarrow\left(a^2+4a+4\right)+\left(b^2+4b+4\right)+\left(c^2+4c+4\right)=0\)
\(\Leftrightarrow\left(a+2\right)^2+\left(b+2\right)^2+\left(c+2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+2=0\\b+2=0\\c+2=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c=-2\)
\(\Rightarrow P=1+1+1=3\)
\(\Sigma_{sym}a^4b^4\ge\frac{\left(\Sigma_{sym}a^2b^2\right)^2}{3}\ge\frac{\left(\Sigma_{sym}ab\right)^4}{27}\ge\frac{a^2b^2c^2\left(a+b+c\right)^2}{3}=3a^4b^4c^4\)
\(\Sigma\frac{a^5}{bc^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{abc\left(a+b+c\right)}\ge\frac{\left(a^2+b^2+c^2\right)^4}{abc\left(a+b+c\right)^3}\ge\frac{\left(a+b+c\right)^6\left(a^2+b^2+c^2\right)}{27abc\left(a+b+c\right)^3}\)
\(\ge\frac{\left(3\sqrt[3]{abc}\right)^3\left(a^2+b^2+c^2\right)}{27abc}=a^2+b^2+c^2\)
Đặt \(b+c-a=2x;c+a-b=2y;a+b-c=2z\)\(\Rightarrow a=y+z;b=z+x;c=x+y\)
\(P=\dfrac{4a}{b+c-a}+\dfrac{4b}{c+a-b}+\dfrac{4c}{a+b-c}=\dfrac{4\left(y+z\right)}{2x}+\dfrac{4\left(z+x\right)}{2y}+\dfrac{4\left(x+y\right)}{2z}\)\(\Leftrightarrow\dfrac{2\left(y+z\right)}{x}+\dfrac{2\left(z+x\right)}{y}+\dfrac{2\left(x+y\right)}{z}=2\left(\dfrac{y}{x}+\dfrac{z}{x}+\dfrac{z}{y}+\dfrac{x}{y}+\dfrac{x}{z}+\dfrac{y}{z}\right)\ge2.\left(2+2+2\right)=12\)
Sử dụng bđt cô-si cho 3 số là ok
\(a^4b^4+b^4c^4+c^4a^4\ge3\sqrt[3]{a^4b^4b^4c^4c^4a^4}=3a^4b^4c^4\)
P/S: Cái gt hơi thừa thì phải ???
Ấy chết pẹ , nhầm , bài nãy sai bỏ đi nha