K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2019

áp dụng BDT schwar

7 tháng 8 2019

bài dễ mà

Áp dụng BĐT Schwar => \(\frac{a^2}{-a+b+c}+\frac{b^2}{a-b+c}+\frac{c^2}{a+b-c}\ge\frac{\left(a+b+c\right)^2}{\left(-a+b+c\right)+\left(a-b+c\right)+\left(a+b-c\right)}\\ \)

\(\ge\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)

Ta có: \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\ge\left(a+b\right)^2-\frac{3}{4}\left(a+b\right)^2.\left(a+b\right)=\frac{1}{4}\left(a+b\right)^3\)

\(\Rightarrow\frac{c}{\sqrt[3]{a^3+b^3}}\le\sqrt[3]{4}.\frac{c}{a+b}\)

Tương tự rồi cộng theo vế 3 BĐT trên ta có đpcm

7 tháng 9 2015

Bài 1:Với  a,b,c,d dương

Ta có: \(\frac{a}{a+b+c+d}

7 tháng 5 2016

\(\frac{b^2+c^2-a^2}{bc}+\frac{c^2+a^2-b^2}{ac}+\frac{a^2+b^2-c^2}{ab}\)

\(=\frac{b^2+\left(c-a\right)\left(c+a\right)}{bc}+\frac{c^2+\left(a-b\right)\left(a+b\right)}{ac}+\frac{a^2+\left(b-c\right)\left(b+c\right)}{ab}\)

\(>\frac{b^2+\left(c-a\right).b}{bc}+\frac{c^2+\left(a-b\right).c}{ac}+\frac{a^2+\left(b-c\right).a}{ab}\)(BĐT tam giác)

\(=\frac{b+c-a}{c}+\frac{c+a-b}{a}+\frac{a+b-c}{b}\)

rồi sao đứng bánh r

7 tháng 5 2016

Giải bằng lập luận tương đương nhá

Ta có: \(A=\frac{b^2+c^2+2bc-a^2}{bc}+\frac{c^2+a^2-2ca-b^2}{ac}+\frac{a^2+b^2-2ab-c^2}{ab}>0\)

\(\Leftrightarrow A=\frac{\left(b+c\right)^2-a^2}{bc}+\frac{\left(c-a\right)^2-b^2}{ac}+\frac{\left(a-b\right)^2-c^2}{ab}>0\)

\(\Leftrightarrow A=\frac{\left(b+c-a\right)\left(a+b+c\right)}{bc}+\frac{\left(c-a-b\right)\left(b+c-a\right)}{ac}+\frac{\left(a-b-c\right)\left(a+c-b\right)}{ab}>0\)

cmđ cái phân số đầu >0

2p/s sau quy đồng, lấy nhân tử chung là b+c-a là ra

23 tháng 10 2018

Bài này là bài chốt trong đề thi hsg toán 9 cấp huyện năm nay của đức thọ đó!

23 tháng 10 2018

bạn vào Thư viện đề thi THCS Hoàng Xuân Hãn rồi bấm vào mục ở dưới dưới ak tên mục là

Đáp án đề thi hsg toán 9 huyện Đức Thọ năm  học 2018-2019 Đây là bài cuối của đề ak!

15 tháng 7 2017

\(\frac{2\left(Σab\right)}{Σa^2}\le\frac{2\left(Σa^2\right)}{a^2}=2\)

tuc la can cm \(Σ\frac{a}{b+c}\le\frac{7}{2}-2=\frac{3}{2}\)

Nguoc dau voi BDT Nesbitt

vay BDT sai ko xay ra dau = maybe :3

15 tháng 7 2017

Bất đẳng thức này mà ko loạn dấu thì tự làm đc r. Nhưng vế trước>=3/2, vế sau<=2 quá loạn dấu

20 tháng 5 2018

Do a, b, c là 3 cạnh của tam giác ABC nên a, b, c đều dương. Do đó cả 2 vế đều dương.

Lập phương mỗi vế, ta được phương trình mới tương đương với phương trình đã cho:

\(\frac{a^3}{b^3+c^3}+\frac{b^3}{c^3+a^3}+\frac{c^3}{a^3+b^3}< 8\cdot4=32\left(1\right)\)

Ta có \(\frac{a^3}{b^3+c^3}< \frac{2a^3}{a^3+b^3+c^3}\);\(\frac{b^3}{a^3+c^3}< \frac{2b^3}{a^3+b^3+c^3}\)và \(\frac{c^3}{a^3+b^3}< \frac{2c^3}{a^3+b^3+c^3}\)

Do đó \(\frac{a^3}{b^3+c^3}+\frac{b^3}{c^3+a^3}+\frac{c^3}{a^3+b^3}< 2< 32\)

Vì vậy bất đẳng thức (1) là đúng, nên bất đẳng thức đã cho là đúng

1 tháng 2 2018

Hình như đề sai rùi bạn ơi hình như phải cm >= 3 chứ

1 tháng 2 2018

bạn giải thử