Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{b^2+c^2-a^2}{bc}+\frac{c^2+a^2-b^2}{ac}+\frac{a^2+b^2-c^2}{ab}\)
\(=\frac{b^2+\left(c-a\right)\left(c+a\right)}{bc}+\frac{c^2+\left(a-b\right)\left(a+b\right)}{ac}+\frac{a^2+\left(b-c\right)\left(b+c\right)}{ab}\)
\(>\frac{b^2+\left(c-a\right).b}{bc}+\frac{c^2+\left(a-b\right).c}{ac}+\frac{a^2+\left(b-c\right).a}{ab}\)(BĐT tam giác)
\(=\frac{b+c-a}{c}+\frac{c+a-b}{a}+\frac{a+b-c}{b}\)
rồi sao đứng bánh r
Giải bằng lập luận tương đương nhá
Ta có: \(A=\frac{b^2+c^2+2bc-a^2}{bc}+\frac{c^2+a^2-2ca-b^2}{ac}+\frac{a^2+b^2-2ab-c^2}{ab}>0\)
\(\Leftrightarrow A=\frac{\left(b+c\right)^2-a^2}{bc}+\frac{\left(c-a\right)^2-b^2}{ac}+\frac{\left(a-b\right)^2-c^2}{ab}>0\)
\(\Leftrightarrow A=\frac{\left(b+c-a\right)\left(a+b+c\right)}{bc}+\frac{\left(c-a-b\right)\left(b+c-a\right)}{ac}+\frac{\left(a-b-c\right)\left(a+c-b\right)}{ab}>0\)
cmđ cái phân số đầu >0
2p/s sau quy đồng, lấy nhân tử chung là b+c-a là ra
bài dễ mà
Áp dụng BĐT Schwar => \(\frac{a^2}{-a+b+c}+\frac{b^2}{a-b+c}+\frac{c^2}{a+b-c}\ge\frac{\left(a+b+c\right)^2}{\left(-a+b+c\right)+\left(a-b+c\right)+\left(a+b-c\right)}\\ \)
\(\ge\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)
Áp dụng BĐT côsi ta có:
a² + bc ≥ 2.a√(bc)
<=> 1/(a² + bc) ≤ 1/(2a√(bc)) -------------(1)
tương tự vậy:
1/(b² + ac) ≤ 1/(2b√(ac)) -------------------(2)
1/(c² + ab) ≤ 1/(2c√(ab)) -------------------(3)
lấy (1) + (2) + (3)
=> 1/(a² + bc) + 1/(b² + ac) + 1/(c² + ab) ≤ 1/(2a√(bc)) + 1/(2b√(ac)) + 1/(2c√(ab))
<=>1/(a² + bc) + 1/(b² + ac) + 1/(c² + ab) ≤ √(bc)/2abc + √(ac)/2abc + √(ab)/2abc
<=>1/(a² + bc) + 1/(b² + ac) + 1/(c² + ab) ≤ [√(bc) + √(ac) + √(ab) ]/2abc (!)
Ta chứng minh bổ đề:
√(ab) + √(bc) + √(ac) ≤ a + b + c
thật vậy, áp dụng BĐT côsi ta được:
a + b ≥ 2√(ab) --- (*)
a + c ≥ 2√(ac) --- (**)
b + c ≥ 2√(bc) --- (***)
lấy (*) + (**) + (***) => 2(a + b + c) ≥ 2.[ √(bc) + √(ac) + √(ab) ]
<=> √(bc) + √(ac) + √(ab) ≤ a + b + c (@)
từ (!) và (@)
=> 1/(a² + bc) + 1/(b² + ac) + 1/(c² + ab) ≤ (a + b + c)/2abc ( Đpcm )
Áp dụng AM - GM:
\(\frac{1}{a^2+bc}\le\frac{1}{2a\sqrt{bc}};\frac{1}{b^2+ac}\le\frac{1}{2b\sqrt{ca}};\frac{1}{c^2+ab}\le\frac{1}{2c\sqrt{ab}}\)
Khi đó:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+ab}\le\frac{1}{2a\sqrt{bc}}+\frac{1}{2b\sqrt{ca}}+\frac{1}{2c\sqrt{ab}}\)
\(=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\le\frac{a+b+c}{2abc}\)
b) Ta có:
\(\frac{a}{\sqrt{b^2+3}}+\frac{a}{\sqrt{b^2+3}}+\frac{b^2+3}{8}+\frac{a^2}{2}\)\(\ge\)\(4\sqrt[4]{\frac{a^4}{16}}=2a\)
\(\frac{b}{\sqrt{c^2+3}}+\frac{b}{\sqrt{c^2+3}}+\frac{c^2+3}{8}+\frac{b^2}{2}\ge4\sqrt[4]{\frac{b^4}{16}}=2b\)
\(\frac{c}{\sqrt{a^2+3}}+\frac{c}{\sqrt{a^2+3}}+\frac{a^2+3}{8}+\frac{c^2}{2}\ge4\sqrt[4]{\frac{c^4}{16}}=2c\)
Cộng lại ta đươc:
\(2\left(\frac{a}{\sqrt{b^2+3}}+\frac{b}{\sqrt{c^2+3}}+\frac{c}{\sqrt{a^2+3}}\right)+\)\(\frac{5\left(a^2+b^2+c^2\right)+9}{8}\)\(\ge2\left(a+b+c\right)\)
⇒ \(2\left(\frac{a}{\sqrt{b^2+3}}+\frac{b}{\sqrt{c^2+3}}+\frac{c}{\sqrt{a^2+3}}\right)\ge\)\(6-\frac{5\left(a^2+b^2+c^2\right)+9}{8}\)(1)
Lại có: \(a^2+1\ge2a\); \(b^2+1\ge2b\); \(c^2+1\ge2c\)
Suy ra \(a^2+b^2+c^2\ge2\left(a+b+c\right)-3=3\)
Khi đó (1)⇔ \(2\left(\frac{a}{\sqrt{b^2+3}}+\frac{b}{\sqrt{c^2+3}}+\frac{c}{\sqrt{a^2+3}}\right)\ge\)\(6-\frac{5.3+9}{8}=3\)
⇒ \(\frac{a}{\sqrt{b^2+3}}+\frac{b}{\sqrt{c^2+3}}+\frac{c}{\sqrt{a^2+3}}\ge\frac{3}{2}\)
Dấu "=" xảy ra ⇔ \(a=b=c=1\)
\(\left(a^2+3b^2\right)\left(1+3\right)\ge\left(a+3b\right)^2\Rightarrow\sqrt{a^2+3b^2}\ge\frac{a+3b}{2}\)
\(\Rightarrow P=\sum\frac{ab}{\sqrt{a^2+3b^2}}\le2\sum\frac{ab}{a+3b}=2\sum\frac{ab}{a+b+b+b}\)
\(\Rightarrow P\le\frac{1}{8}\sum ab\left(\frac{1}{a}+\frac{3}{b}\right)=\frac{1}{8}\sum\left(3a+b\right)=\frac{1}{2}\left(a+b+c\right)=\frac{3}{2}\)
"=" \(\Leftrightarrow a=b=c=1\)
2/
- Chứng minh \(\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)
Ta có \(\sqrt{2}.\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)\ge2\left(a+b+c\right)\)
\(\Leftrightarrow\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)
- Chứng minh \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}< \sqrt{3}\left(a+b+c\right)\)
Bạn chứng minh bằng biến đổi tương đương
1/ \(ab+bc+ac=3abc\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)
Ta có \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\le\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{3}{2}\)
Vậy min P = 3/2 tại a = b = c = 1
a)\(VT=\sum_{cyc}\frac{ab^3+ab^2c+a^2bc}{\left(a^2+bc+ca\right)\left(b^2+bc+ca\right)}\le\frac{\sum_{cyc}\left(ab^3+ab^2c+a^2bc\right)}{\left(ab+bc+ca\right)^2}\)
\(=\frac{ab^3+bc^3+ca^3+2a^2bc+2ab^2c+2abc^2}{\left(ab+bc+ca\right)^2}\)\(\le\frac{\sum_{cyc}ab\left(a^2+b^2\right)+abc\left(a+b+c\right)}{\left(ab+bc+ca\right)^2}\)
\(=\frac{\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)}{\left(ab+bc+ca\right)^2}=\frac{a^2+b^2+c^2}{ab+bc+ca}=VP\)