K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2017

không mất tính tổng quát,giả sử a >= b

xét hiệu 2(a8+b8)-2(a7+b7)=2(a8+b8)-(a+b)(a7+b7) (do a+b=2)

=2a8+2b8-a8-ab7-a7b-b8=a8-a7b-ab7+b8=a7(a-b)-b7(a-b)=(a7-b7)(a-b) (1)

Theo giả sử : a>=b => a-b>=0 và a7-b7>=0

Vậy (1) >= 0 =>đpcm

13 tháng 5 2021

Bài này `a=b=2=>ab=a+b` nhé.=>Phải là `ab>=a+b`

`ab>=a+b`

`<=>2ab>=2a+2b`

`<=>ab-2a+ab-2b>=0`

`<=>a(b-2)+b(a-2)>=0`

Mà `a>=2,b>=2`

`=>đpcm`

18 tháng 4 2019

a. -3 + 1 ≤ -2: Đúng

b. 7 – (-15) < 20: Sai

c. (-4).5  ≤  -18: Đúng

d. 8 : (-3) > 7 : (-2): Đúng

31 tháng 5 2018

Ta có: \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{9}{2\left(a+b+c\right)}\)

\(\Rightarrow\left(a^2+b^2+c^2\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{3}{2}\left(a+b+c\right)\)

4 tháng 9 2017

ta áp dụng cô-si la ra 
a^2+b^2+c^2 ≥ ab+ac+bc 
̣̣(a - b)^2 ≥ 0 => a^2 + b^2 ≥ 2ab (1) 
(b - c)^2 ≥ 0 => b^2 + c^2 ≥ 2bc (2) 
(a - c)^2 ≥ 0 => a^2 + c^2 ≥ 2ac (3) 
cộng (1) (2) (3) theo vế: 
2(a^2 + b^2 + c^2) ≥ 2(ab+ac+bc) 
=> a^2 + b^2 + c^2 ≥ ab+ac+bc 
dấu = khi : a = b = c

4 tháng 9 2017

Bạn cm hộ mình cô si la dc k mình chưa học đến