K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2018

với mọi a, b ta có : 
( a - b) ² >= 0 
<=> a² - 2ab + b² >= 0 
<=> a² + b² >=2ab 
<=> 2 ( a² + b² ) >= a² +2ab + b² 
<=> 2 (a² + b² ) >= ( a + b )² mà a+b=1 nên 2 ( a² + b² ) >=1 
<=> a² + b² >= 1/2 
Dấu “ = " xảy ra khi và chỉ khi : a=b mà a+b=1 nên a=b=1/2

14 tháng 4 2018

nhớ k nha

20 tháng 3 2018

2.

\(\dfrac{\left(a+b\right)^2}{2}\ge2ab\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( đúng )

Tương tự.......................

20 tháng 3 2018

1. Xét hiệu : \(\dfrac{1}{a}-\dfrac{1}{b}=\dfrac{b-a}{ab}\)

Lại có: b - a < 0 ( a > b)

ab >0 ( a>0, b > 0)

\(\Rightarrow\dfrac{b-a}{ab}< 0\)

Vậy: \(\dfrac{1}{a}< \dfrac{1}{b}\)

2. Xét hiệu : \(\dfrac{\left(a+b\right)^2}{2}-2ab=\dfrac{a^2+2ab+b^2-4ab}{2}=\dfrac{\left(a-b\right)^2}{2}\ge0\)

Vậy : \(\dfrac{\left(a+b\right)^2}{2}\ge2ab\) Xảy ra đẳng thức khi a = b

3. Xét hiệu : \(\dfrac{a^2+b^2}{2}-ab=\dfrac{a^2+b^2-2ab}{2}=\dfrac{\left(a-b\right)^2}{2}\ge0\)

Vậy : \(\dfrac{a^2+b^2}{2}\ge ab\) Xảy ra đẳng thức khi a = b

NV
23 tháng 3 2019

Câu 1: Dùng biến đổi tương đương:

a/ \(3\left(m+1\right)+m< 4\left(2+m\right)\)

\(\Leftrightarrow3m+3+m< 8+4m\)

\(\Leftrightarrow4m+3< 8+4m\)

\(\Leftrightarrow3< 8\) (đúng), vậy BĐT ban đầu là đúng

b/ \(\left(m-2\right)^2>m\left(m-4\right)\)

\(\Leftrightarrow m^2-4m+4>m^2-4m\)

\(\Leftrightarrow4>0\) (đúng), vậy BĐT ban đầu đúng

Câu 2:

a/ \(b\left(b+a\right)\ge ab\)

\(\Leftrightarrow b^2+ab\ge ab\)

\(\Leftrightarrow b^2\ge0\) (luôn đúng), vậy BĐT ban đầu đúng

b/ \(a^2-ab+b^2\ge ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

NV
23 tháng 3 2019

Câu 3:

a/ \(10a^2-5a+1\ge a^2+a\)

\(\Leftrightarrow9a^2-6a+1\ge0\)

\(\Leftrightarrow\left(3a-1\right)^2\ge0\) (luôn đúng)

b/ \(a^2-a\le50a^2-15a+1\)

\(\Leftrightarrow49a^2-14a+1\ge0\)

\(\Leftrightarrow\left(7a-1\right)^2\ge0\) (luôn đúng)

Câu 4:

Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(\Rightarrow VT=\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}\)

\(\Rightarrow VT< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(\Rightarrow VT< 2\left(1-\frac{1}{\sqrt{n+1}}\right)< 2\)

18 tháng 11 2018

Có \(\frac{a}{b}=\frac{b}{c}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)

Đặt \(\frac{a}{c}=\frac{b}{d}=k\Rightarrow a=c.k;b=d.k\)

\(\Rightarrow a^2=c^2.k^2;b^2=d^2.k^2\)

Khi đó \(\frac{a^2+c^2}{b^2+d^2}=\frac{c^2.k^2+c^2}{d^2.k^2+d^2}=\frac{c^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{c^2}{d^2}=\frac{a^2}{b^2}\)

24 tháng 3 2017

Bài 1:

Ta có: (2a-2b)2 lớn hơn hặc bằng 0

<=> 4a2-8ab+4b2 lớn hơn hoặc bằng 0

<=> 5a2-a2-8ab+20b2-16b2 lớn hơn hoặc bằng 0

<=> 5a2+20b2 lớn hơn hoặc bằng a2+8ab+16b

<=> 5(a2+4b2) lớn hơn hoặc bằng (a+4b)2

<=> 5(a2+4b2) lớn hơn hoặc bằng 1 [ Thay (a+4b)2 =1]

24 tháng 3 2017

3)

\(a=b+1\Leftrightarrow a+1>b+1\Leftrightarrow a>b+1-1\\ \Leftrightarrow a>b\)

15 tháng 8 2020

1) \(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow a^2+b^2+1-ab+a+b\ge0\)

\(\Leftrightarrow2a^2+2b^2+2-2ab+2a+2b\ge0\)

\(\Leftrightarrow\left(a^2+2ab+b^2\right)+\left(a^2+2a+1\right)+\left(b^2+2b+1\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)^2+\left(a+1\right)^2+\left(b+1\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra \(\Leftrightarrow a=b=-1\)

2/ \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)

Áp dụng bđt cosi : \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge2\sqrt{ab}\cdot2\sqrt{\frac{1}{a}.\frac{1}{b}}=4\)(ĐPCM)

Dấu "=" xảy ra \(\Leftrightarrow a=b\)

3/ \(\frac{a^2+a+1}{a^2-a+1}>0\)

Vì \(\hept{\begin{cases}a^2+a+1=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}>0\\a^2-a+1=\left(a-\frac{1}{2}\right)^2+\frac{3}{4}>0\end{cases}}\Leftrightarrow\frac{a^2+a+1}{a^2-a+1}>0\)(ĐPCM)

27 tháng 5 2017

minh chua co luot k nao k minh di

28 tháng 5 2017

Bài 1:

a)\(A=x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)\)\(=x^3-xy-x^3-x^2y+yx^2-yx=-2xy\)

Thay x=1/2 và y=-100 vào biểu thức A ta được \(A=-2.\frac{1}{2}.\left(-100\right)=100\)

b)\(B=\left(x^2-5\right)\left(x+3\right)+\left(x+4\right)\left(x-x^2\right)=x^3+3x^2-5x-15-x^3-3x^2+4x\)=-x-15

Thay x=-1 vào biểu thức B ta được B=-(-1)-15=1-15=-14

6 tháng 6 2018

\(\dfrac{a^2}{b-1}+\dfrac{b^2}{c-1}+\dfrac{c^2}{a-1}\ge12\)

\(\Leftrightarrow\dfrac{a^2}{b-1}-4+\dfrac{b^2}{c-1}-4+\dfrac{c^2}{a-1}-4\ge0\)

\(\Leftrightarrow\dfrac{a^2-4b+4}{b-1}+\dfrac{b^2-4c+4}{c-1}+\dfrac{c^2-4a+4}{a-1}\ge0\)

\(a;b;c>1\Leftrightarrow a-1;b-1;c-1>0\)

\(\Leftrightarrow a^2-4b+4+b^2-4c+4+c^2-4a+4\ge0\)

\(\Leftrightarrow\left(a-2\right)^2+\left(b-2\right)^2+\left(c-2\right)^2\ge0\) (Đúng)

\("="\Leftrightarrow a=b=c=2\)