Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow ad=bc\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng t/c dãy tỉ số bằng nhau: \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
=>\(\left(a+b\right)\left(c-d\right)=\left(c+d\right)\left(a-b\right)\Leftrightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(đpcm)
cảm ơn bn Trà Mi nhưng tôi chỉ đăng z thôi chứ bài này dễ mà ai chẳng lm đc
a) Sửa đề CMR : \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
=> \(\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\)
=> \(\left(\frac{a}{b}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\)
=> \(\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\left(\frac{a+b+c}{b+c+d}\right)^3\)
=> \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\left(\text{vì }\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\right)\)
=> \(\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\left(\text{đpcm}\right)\)
b) |17x - 5| - |17x + 5| = 0
=> |17x - 5| = |17x + 5|
=> \(\orbr{\begin{cases}17x-5=17x+5\\17x-5=-17x-5\end{cases}}\Rightarrow\orbr{\begin{cases}0x=10\\34x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x\in\varnothing\\x=0\end{cases}}\Rightarrow x=0\)
Vậy x = 0 là giá trị cần tìm
\(\frac{a}{b}=\frac{c}{d}\)
\(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)
Ta có :
\(\frac{a}{b}=\frac{c}{d}=m\Rightarrow a=m.b;c=m.d\)
\(\Rightarrow\frac{ac}{bd}=\frac{m.b.m.d}{bd}=m.m=m^2\)
\(\Rightarrow\frac{a^2+c^2}{b^2+d^2}=\frac{\left(mb\right)^2+\left(md\right)^2}{b^2+d^2}=\frac{m^2\left(b^2+d^2\right)}{b^2+d^2}=m^2\)
Vì \(m^2=m^2\Rightarrow\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)
Câu 1
Ta có : \(\frac{a}{b}=\frac{c}{d}=>\left(\frac{a}{b}+1\right)=\left(\frac{c}{d}+1\right)\left(=\right)\frac{a+b}{b}=\frac{c+d}{d}\)
=> ĐPCM
Câu 2
Ta có \(\frac{a}{b}=\frac{c}{d}=>\frac{b}{a}=\frac{d}{c}=>\left(\frac{b}{a}+1\right)=\left(\frac{d}{c}+1\right)\left(=\right)\frac{b+a}{a}=\frac{d+c}{c}=>\frac{a}{b+a}=\frac{c}{d+c}\)
=> ĐPCM
Câu 3
Câu 3
Ta có \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(=) (a+b).(c-d)=(a-b).(c+d)(=)ac-ad+bc-bd=ac+ad-bc-bd(=)-ad+bc=ad-bc(=) bc+bc=ad+ad(=)2bc=2ad(=)bc=ad=> \(\frac{a}{b}=\frac{c}{d}\)
=> ĐPCM
Câu 4
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(=>\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có \(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\left(1\right)\)
Lại có \(\frac{a^2+c^2}{b^2+d^2}=\frac{b^2k^2+c^2k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)
Từ (1) và (2) => ĐPCM
Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=K\)
\(\Rightarrow a=cK;b=dK\)
Khi đó: \(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(cK\right)^2+c^2}{\left(dK\right)^2+d^2}=\frac{c^2.K^2+c^2}{d^2.K^2+d^2}=\frac{c^2\left(K^2+1\right)}{d^2\left(K^2+1\right)}=\frac{c^2}{d^2}=\frac{ac}{bd}\)(Do \(\frac{a}{b}=\frac{c}{d}\))
Vậy: \(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)