K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2018

ok k đi

31 tháng 7 2018

You 2k mấy mak đòi xưng a -_-

ab + 2 = 2 + ab :))))

21 tháng 9 2017

Cả cuộc đời này tôi sẽ mãi yêu một người 

Ta có: \("\sqrt{a}-\sqrt{b}"^2\ge0\) với mọi  \(a,b\ge0\)

\(\Leftrightarrow a-\sqrt{ab+b}\ge0\)

\(\Leftrightarrow a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow\frac{a+b}{2}\ge\sqrt{ab}\)

Dấu \("="\)xảy ra khi \(\sqrt{a}-\sqrt{b}=0\Leftrightarrow a=b\)

11 tháng 8 2020

\(VP=\frac{AH.AK+CH.CE+BH.BD+CH.CE-\left(AH.AK+BH.BD\right)}{BH.BD+CH.CE+AH.AK+BH.BD-\left(AH.AK+CH.CE\right)}\)

          \(=\frac{2CH.CE}{2BH.BD}=\frac{CK.CB}{BK.BC}=\frac{KC}{KB}\) (DPCM)

29 tháng 1 2017

1/a/ Ta có: \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)

\(\Leftrightarrow\left(1+x^2\right)\left(1+xy\right)+\left(1+y^2\right)\left(1+xy\right)-2\left(1+x^2\right)\left(1+y^2\right)\ge0\)

 \(\left(y-x\right)^2\left(xy-1\right)\ge0\)(đúng vì \(\hept{\begin{cases}x\ge1\\y\ge1\end{cases}}\))

Dấu = xảy ra khi x = y = 1

29 tháng 1 2017

b/ Ta có: 6xy - 2x + 3y \(\le\)2

<=> (2x + 1)(3y - 1)\(\le\)1

Áp dụng câu a ta có:

\(A=\frac{1}{4x^2-4x+2}+\frac{1}{9y^2+6y+2}\)

\(=\frac{1}{1+\left(2x-1\right)^2}+\frac{1}{1+\left(3y-1\right)^2}\)

\(\ge\frac{2}{1+\left(2x-1\right)\left(3y+1\right)}\)

\(\ge\frac{2}{1+1}=1\)

Dấu = xảy ra khi x = 1, y = 0

23 tháng 7 2016

ở cuối câu 1 thiếu ^2 nha. 2y thành 2y^2

NV
22 tháng 2 2020

5.

ĐKXĐ: \(0\le x\le1\)

\(P=\sqrt{1-x}+\sqrt{x}+\sqrt{1+x}+\sqrt{x}\)

\(P\ge\sqrt{1-x+x}+\sqrt{1+x+x}=1+\sqrt{1+2x}\ge2\)

\(\Rightarrow P_{min}=2\) khi \(x=0\)

6.

\(3=a^2+b^2+ab\ge2ab+ab=3ab\Rightarrow ab\le1\)

\(3=a^2+b^2+ab\ge-2ab+ab=-ab\Rightarrow ab\ge-3\)

\(\Rightarrow-3\le ab\le1\)

\(a^2+b^2+ab=3\Rightarrow a^2+b^2=3-ab\)

Ta có:

\(P=\left(a^2+b^2\right)^2-2a^2b^2-ab\)

\(P=\left(3-ab\right)^2-2a^2b^2-ab=-a^2b^2-7ab+9\)

Đặt \(ab=x\Rightarrow-3\le x\le1\)

\(P=-x^2-7x+9=21-\left(x+3\right)\left(x+4\right)\le21\)

\(\Rightarrow P_{max}=21\) khi \(x=-3\) hay \(\left(a;b\right)=\left(-\sqrt{3};\sqrt{3}\right)\) và hoán vị

\(P=-x^2-7x+9=1+\left(1-x\right)\left(x+8\right)\ge1\)

\(\Rightarrow P_{min}=1\) khi \(x=1\) hay \(a=b=1\)

NV
22 tháng 2 2020

1. \(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z+xy+yz+zx=6\)

\(\Leftrightarrow x+y+z+\frac{1}{3}\left(x+y+z\right)^2\ge6\)

\(\Leftrightarrow\left(x+y+z\right)^2+3\left(x+y+z\right)-18\ge0\)

\(\Leftrightarrow\left(x+y+z+6\right)\left(x+y+z-3\right)\ge0\)

\(\Leftrightarrow x+y+z\ge3\)

Vậy \(P=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\ge\frac{1}{3}.3^2=3\)

Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)

2. Áp dụng BĐT Bunhiacopxki:

\(Q^2\le3\left(2a+bc+2b+ac+2c+ab\right)\)

\(Q^2\le6\left(a+b+c\right)+3\left(ab+bc+ca\right)\)

\(Q^2\le6\left(a+b+c\right)+\left(a+b+c\right)^2=16\)

\(\Rightarrow Q\le4\Rightarrow Q_{max}=4\) khi \(a=b=c=\frac{2}{3}\)

NV
18 tháng 9 2019

\(\Leftrightarrow\sqrt{a}+\sqrt{b}\ge\frac{2\sqrt{ab}}{\sqrt[4]{ab}}\)

\(\Leftrightarrow\sqrt{a}+\sqrt{b}-2\sqrt[4]{ab}\ge0\)

\(\Leftrightarrow\left(\sqrt[4]{a}-\sqrt[4]{b}\right)\ge0\) (luôn đúng)

Dấu "=" xảy ra khi a=b