Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lan nghĩ ra một số biết rằng số đó bằng hiệu của số chẵn lớn nhất có 3 chữ số chẵn khác nhau với 60 rồi cộng thêm 21. Hỏi số lan nghĩ là số nào
a, 5(2-3n)+42+3n\(\ge\)0
<=> 10-15n+42+3n\(\ge\)0
<=> 52-12n\(\ge\)0
<=> -12n\(\ge\)-52
<=>n\(\le\)\(\dfrac{13}{3}\)
Vậy bft có tập nghiệm là S={n/ n\(\le\)\(\dfrac{13}{3}\)}
b, (n+1)2-(n-2)(n+2)\(\le\)1,5
<=> n2+2n+1-n2+4\(\le\)1,5
<=> 2n+5\(\le\)1,5
<=> 2n\(\le\)-4,5
<=>n\(\le\)-2,25
Vậy bft có tập nghiệm là S={ n/n\(\le\) -2,25}
a: \(=n^3+2n^2-3n^2-6n+n+2-n^3+2\)
\(=-n^2+5n\)
Cái này nếu n=1 thì ko thỏa mãn nha bạn
b: \(=6n^2+30n+n+5-6n^2+30n-10n+50\)
\(=49n+55\)
Nếu n là số lẻ thì 49n+55 chia hết cho 2
Còn nếu n là số chẵn thì 49n+55 ko chia hết cho 2 nha bạn
a, Ta có: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)
\(=5n^2+5n=5\left(n^2+n\right)⋮5\)
\(\Rightarrowđpcm\)
b, \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)
\(=6n^2+31n+5-6n^2-7n+5\)
\(=24n+10=2\left(12n+5\right)⋮2\)
\(\Rightarrowđpcm\)
a,
\(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\\ =\left(n^2+3n-1\right)n+\left(n^2+3n-1\right)2-n^3+2\\ =n^3+3n^2-n+2n^2+6n-2-n^3+2\\ =5n^2+5n\\ =5\cdot\left(n^2+n\right)⋮5\\ \RightarrowĐpcm\)
b,
\(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\\ =\left(6n+1\right)n+\left(6n+1\right)5-\left(3n+5\right)2n-\left(3n+5\right)\\ =6n^2+n+30n+5-6n^2-10n-3n-5\\ =18n⋮2\\ \RightarrowĐpcm\)
Ta có: m<n
\(\Leftrightarrow m\times\dfrac{1}{2}< n\times\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{m}{2}< \dfrac{n}{2}\)\(\Leftrightarrow\dfrac{m}{2}+\left(-5\right)=\dfrac{n}{2}+\left(-5\right)\)\(\Leftrightarrow\dfrac{m}{2}-5< \dfrac{n}{2}-5\)
a, \(5\left(2-3n\right)+42+3n\ge0\)
\(\Leftrightarrow10-15n+42+3n\ge0\)
\(\Leftrightarrow52-12n\ge0\Leftrightarrow52\ge12n\Leftrightarrow12n\le52\Leftrightarrow n\le\dfrac{13}{3}\)
Vậy bất phương trình có nghiệm \(n\le\dfrac{13}{3}\)
b, \(\left(n+1\right)^2-\left(n+2\right)\left(n-2\right)\le1,5\)
\(\Leftrightarrow n^2+2n+1-\left(n^2-4\right)\le1,5\)
\(\Leftrightarrow n^2+2n+1-n^2+4\le1,5\)
\(\Leftrightarrow2n+5\le1,5\)\(\Leftrightarrow2n\le-3,5\)\(\Leftrightarrow n\le-1,75\)
Vậy bất phương trình có nghiệm \(n\le-1,75\)
1, giải : Vì m<n (gt)\(\Rightarrow\)\(\dfrac{m}{2}< \dfrac{n}{2}\)\(\Rightarrow\)\(\dfrac{m}{2}-5< \dfrac{n}{2}-5\)
2. a, 5(2-3n)+42+3n \(\ge\) 0
\(\Leftrightarrow\) 10-15n +42+3n\(\ge\) 0
\(\Leftrightarrow\) 52-12n\(\ge\) 0
\(\Leftrightarrow\) -12n \(\ge\) -52
\(\Leftrightarrow\)n\(\le\)\(\dfrac{13}{3}\)
b, \(\left(n+1\right)^2-\left(n-2\right)\left(n+2\right)\le15\)
\(\Leftrightarrow n^2+2n+1-n^2+4\le1,5\)
\(\Leftrightarrow2n+5\le1,5\)
\(\Leftrightarrow n\le-1,75\)
đề yêu cầu làm j z bạn?