Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1+2-3-4-5+6+7-8-9-10+11+12-13-14-15+...+2011+2012-2013-2014-2015+2016+2017-2018-2019-2020 giup mik v
Lời giải:
$A=(1+2-3-4-5)+(6+7-8-9-10)+(11+12-13-14-15)+....+(2011+2012-2013-2014-2015)+(2016+2017-2018-2019-2020)$
$=(-9)+(-14)+(-19)+....+(-2019)+(-2024)$
$=-(9+14+19+...+2019+2024)$
Số số hạng: $(2024-9):5+1=404$
$A=-(2024+9).404:2=-410666$
S=1+(2-3)+(-4+5)+(6-7)+(-8+9)+...+(-2020+2021)
S=1-1+1-1+1+...+1
S=1+0+0+...+0
S=1
a) A=6 -13 +(-14+15+16-17)+(-18+19+20-21)+...+(-2018+2019+2020-2021)+(-2022+2023+2024-2025) +2025
A=-7 +0 +0 +...+0+0 +2025= 2018
B) 7-9+(-10+11+12-13)+(-14+15+16-17)+...+(-2018+2019+2020-2021)+2021
B= -2+0+0+...+0+2021=2019
#Có gì không hiểu thì hỏi nha#
a) A=6 -13 +(-14+15+16-17)+(-18+19+20-21)+...+(-2018+2019+2020-2021)+(-2022+2023+2024-2025) +2025
A=-7 +0 +0 +...+0+0 +2025= 2018
B) 7-9+(-10+11+12-13)+(-14+15+16-17)+...+(-2018+2019+2020-2021)+2021
B= -2+0+0+...+0+2021=2019
#Có gì không hiểu thì hỏi nha#
=(1+2-3-4)+(5+6-7-8)+...+(2017+2018-2019-2020)+2021
=(-4)+(-4)+...+(-4)+2021
=-4*505+2021
=1
\(B=1+2-3-4+5+6-7-8+9+10-...+2018-2019-2020+2021\)
\(B=\left(1+2-3-4\right)+...+\left(2017+2018-2019-2020\right)+2021\) \(B=\left(-4\right)+...+\left(-4\right)+2021+2020:4=505\)
\(B=\left(-4\right).505+2021\) \(B=\left(-2020\right)+2021\)
\(B=1\)
S=1+(2-3)+(-4+5)+(6-7)+(-8+9)+...+(-2020+2021)
S=1-1+1-1+1+...+1
S=1+0+0+...+0
S=1
\(S=1+2-3-4+...+2017+2018-2019-2020+2021\\ S=\left(1+2-3-4\right)+...+\left(2017+2018-2019-2020\right)+2021\\ S=\left(-4\right)+\left(-4\right)+\left(-4\right)+...+-4+2021\\ S=505.\left(-4\right)+2021\\ S=-2020+2021\\ S=1\)
Ta có: \(S=1+2-3-4+5+6-...+2018-2019-2020+2021\)
\(=\left(-4\right)\cdot505+2021\)
=2021-2020
=1
\(S=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(2017+2018-2019-2020\right)+2021\\ S=\left(-4\right)+\left(-4\right)+...+\left(-4\right)+2021\)
Ta có từ 1 đến 2020 có 2020 số nên khi nhóm 4 số 1 cặp thì có \(2020:5=404\left(cặp\right)\)
Vậy \(S=404\left(-4\right)+2021=-1616+2021=405\)
S=1+2-3-4+5+6-7-8+9+10-...+2018-2019-2020+2021
=1+(2-3-4+5)+(6-7-8+9)+...+(2018-2019-2020+2021)
=1+0+0+...+0
=1
Vậy S=1
\(S=1+2-3-4+5+6-7-8+9+10-...+2018-2019-2020+2021\)
\(S=0+1-1+1-1+...-1-+1=0\)