K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2018

Ta có:\(A=\left(4+1\right)\left(4^2+1\right)\left(4^4+1\right)\left(4^8+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)\)

\(\Rightarrow3A=\left(4-1\right)\left(4+1\right)\left(4^2+1\right)\left(4^4+1\right)\left(4^8+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)\)

\(\Rightarrow3A=\left(4^2-1\right)\left(4^2+1\right)\left(4^4+1\right)\left(4^8+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)\)

\(\Rightarrow3A=\left(4^4-1\right)\left(4^4+1\right)\left(4^8+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)\)

\(\Rightarrow3A=\left(4^8-1\right)\left(4^8+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)\)

\(\Rightarrow3A=\left(4^{16}-1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)\)

\(\Rightarrow3A=\left(4^{32}-1\right)\left(4^{32}+1\right)\)

\(\Rightarrow3A=4^{64}-1\)

\(\Rightarrow3A=B\)

27 tháng 7 2023

oa

 

14 tháng 7 2019

Ta có: \(A=\left(4+1\right)\left(4^2+1\right)\left(4^4+1\right)\left(4^8+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)\)

\(\Rightarrow3A=3\left(4+1\right)\left(4^2+1\right)\left(4^4+1\right)\left(4^8+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)\)

\(\Rightarrow3A=\left(4-1\right)\left(4+1\right)\left(4^2+1\right)\left(4^4+1\right)\left(4^8+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)\)

\(\Rightarrow3A=\left(4^2-1\right)\left(4^2+1\right)\left(4^4+1\right)\left(4^8+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)\)

\(\Rightarrow3A=\left(4^4-1\right)\left(4^4+1\right)\left(4^8+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)\)

\(\Rightarrow3A=\left(4^8-1\right)\left(4^8+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)\)

\(\Rightarrow3A=\left(4^{16}-1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)\)

\(\Rightarrow3A=\left(4^{32}-1\right)\left(4^{32}+1\right)\)

\(\Rightarrow3A=4^{64}-1\)

mà \(B=4^{64}-1\)

Vậy \(B=3A\)

27 tháng 8 2016

Ta có (4- 1)(42 + 1) = 4- 1

Ta có 15A = (42 - 1)(42 + 1)(4+ 1)(4+ 1)(416 + 1)(432 + 1) - 464 = 464 - 1 - 464  = -1

=> A = \(\frac{-1}{15}\)

27 tháng 8 2016

Ghi lại cái đề cho rõ hơn đi t giải cho

3 tháng 7 2018

Sửa B=432-1

Ta có: \(3A=\left(4-1\right)\left(4+1\right)\left(4^2+1\right)\left(4^4+1\right)\left(4^8+1\right)\left(4^{16}+1\right)\)

\(=\left(4^2-1\right)\left(4^2+1\right)\left(4^4+1\right)\left(4^8+1\right)\left(4^{16}+1\right)=\left(4^4-1\right)\left(4^4+1\right)\left(4^8+1\right)\left(4^{16}+1\right)\)

\(=\left(4^4-1\right)\left(4^4+1\right)\left(4^8+1\right)\left(4^{16}+1\right)=\left(4^8-1\right)\left(4^8+1\right)\left(4^{16}+1\right)\)

\(=\left(4^{16}-1\right)\left(4^{16}+1\right)=4^{32}-1=B\) (đpcm)

16 tháng 8 2019

Bài 2: 

Ta có: \(\frac{x+1}{x}=10\) hay \(\frac{x^1+1^1}{x^1}=10^1\)

Nên suy ra : \(\frac{x^5+1}{x^5}=10^5\)

                                 = 100000 ( do 15 cũng sẽ =1 nên không viết mũ 5 cũng chả sao)

AH
Akai Haruma
Giáo viên
29 tháng 8 2017

Sao tự nhiên lại lòi ra số c vậy?

30 tháng 8 2017

mình ko biết đề bài nó như z

10 tháng 8 2023

7) \(A=1^2-2^2+3^2-4^2+...-2004^2+2005^2\)

\(A=\left(-1\right)\left(1^{ }+2\right)+\left(-1\right)\left(3+4\right)+...+\left(-1\right)\left(2003+2004\right)+2005^2\)

\(A=-\left(1+2+3+...+2004\right)+2005^2\)

\(A=-\dfrac{2004.\left(2004+1\right)}{2}+2005^2\)

\(A=-1002.2005+2005^2\)

\(A=2005\left(2005-1002\right)=2005.1003=2011015\)

10 tháng 8 2023

8) \(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(B=\dfrac{\left(2^2-1\right)}{2-1}\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(B=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(B=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(B=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(B=\left(2^{32}-1\right)\left(2^{32}+1\right)-2^{64}\)

\(B=\left(2^{64}-1\right)-2^{64}\)

\(B=-1\)