Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(a^2+b^2=\frac{a^2}{1}+\frac{b^2}{1}\ge\frac{\left(a+b\right)^2}{1+1}=\frac{1^2}{2}=\frac{1}{2}\left(đpcm\right)\)
Đẳng thức xảy ra <=> a = b
úi xin lỗi bài kia thiếu ._. Đẳng thức xảy ra <=> a=b=1/2 nhé
2. Ta có : a3 + b3 + ab = ( a + b )( a2 - ab + b2 ) + ab
= a2 - ab + b2 + ac = a2 + b2 ( do a+b=1 )
Sử dụng kết quả ở bài trước ta có đpcm
Đẳng thức xảy ra <=> a=b=1/2
\(a^2+b^2+2\ge2\left(a+b\right)\)
\(\Leftrightarrow a^2+b^2+2\ge2a+2b\)
\(\Leftrightarrow a^2+b^2+2-2a-2b\ge0\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2\ge0\) (luôn đúng \(\forall a;b\) )
Vậy \(a^2+b^2+2\ge2\left(a+b\right)\)
1) Đề sai, thử với x = -2 là thấy không thỏa mãn.
Giả sử cho rằng với đề là x không âm thì áp dụng BĐT Cauchy:
\(A=\)\(\frac{2x}{3}+\frac{9}{\left(x-3\right)^2}=\frac{x-3}{3}+\frac{x-3}{3}+\frac{9}{\left(x-3\right)^2}+2\)
\(A\ge3\sqrt[3]{\frac{\left(x-3\right).\left(x-3\right).9}{3.3.\left(x-3\right)^2}}+2=3+2=5>1\)
Không thể xảy ra dấu đẳng thức.
Câu a)
Ta có a + b \(\ge\)1 => a \(\ge\) 1 - b
Nên a2 + b2 \(\ge\) (1 - b)2 + b2 = 2b2 - 2b + 1 = 2(b2 - 2b.1/2 + 1/4 + 1/2) = 2(b - 1/2)2 + 1 \(\ge\) 1
Câu b) Áp dụng BĐT Bunhiacopxki ta có
(x + y)2 = (1.x + 1.y)2 \(\le\) (12 + 12)(x2 + y2) = 2.1 = 2
Dấu "=" xảy ra <=> x = y
câu1 : cần sửa lại là A2 + B2 \(\ge\frac{1}{2}\)
Ta chứng minh được : (A+B)2 \(\le2.\left(A^2+B^2\right)\) (*)
<=> A2 + B2 + 2A.B \(\le\) 2. (A2 + B2)
<=> 0 \(\le\) A2 + B2 - 2.A.B <=> 0 \(\le\) (A-B)2 luôn đúng => (*) đúng
b) Áp sung câu a => (x+y)2 \(\le\)2.(x2 + y2) = 2 => đpcm
a^2/b+b^2/a>=a+b
=>a^3+b^3>=ab(a+b)
=>a^3+b^3-a^2b-ab^2>=0
=>a^2(a-b)+b^2(b-a)>=0
=>(a-b)^2(a+b)>=0(luôn đúng)
x=a+b
2= a^3+b^3= (a+b)[(a+b)^2-3ab]= x(x^2-3ab) [ Dễ thấy x>0]
Ta có x^2 = (a+b)^2 ≥ 4ab => ab ≤ x^2 /4
=> x^2-3ab ≥ x^2 /4
=> 2= x(x^2-3ab) ≥ x^3 /4
=> x^3 ≤ 8 => x ≤ 2
Hok tốt =.=