Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Link nè lên google search nha!
https://olm.vn/hoi-dap/question/162533.html
A = \(\frac{1}{1\cdot3}\)+ \(\frac{1}{3.5}\)+ \(\frac{1}{5.7}\)+ ..... + \(\frac{1}{99.101}\)
= \(\frac{1}{2}\). ( \(\frac{1}{1.3}\)+ \(\frac{1}{3.5}\)+ \(\frac{1}{5.7}\)+ ...... + \(\frac{1}{99.101}\))
= \(\frac{1}{2}\). ( 1 - \(\frac{1}{3}\)+ \(\frac{1}{3}\)- \(\frac{1}{5}\)+ \(\frac{1}{5}\)- \(\frac{1}{7}\)+ ........ + \(\frac{1}{99}\)- \(\frac{1}{101}\))
= \(\frac{1}{2}\). ( 1 - \(\frac{1}{101}\))
= \(\frac{1}{2}\). \(\frac{100}{101}\)= \(\frac{50}{101}\)
Thấy đúng thì cho mình một k nha!!!
\(A=101+100+99+98+...+3+2+1\)
\(A=1+2+3+...+98+99+100+101\)
\(A=\frac{101-1+1}{2}.\left(101+1\right)\)
\(A=\frac{101}{2}.102\)
\(A=101.\left(102:2\right)\)
\(A=101.51\)
\(A=5111\)
\(B\text{=}\dfrac{3}{1\times3}+\dfrac{3}{3\times5}+\dfrac{3}{5\times7}+...+\dfrac{3}{99\times101}\)
\(B\text{=}3\times\left(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+...+\dfrac{1}{99\times101}\right)\)
\(B\text{=}\dfrac{3}{2}\times\left(\dfrac{3-1}{1\times3}+\dfrac{5-3}{3\times5}+...+\dfrac{101-99}{99\times101}\right)\)
\(B\text{=}\dfrac{3}{2}\times\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(B\text{=}\dfrac{3}{2}\times\left(1-\dfrac{1}{101}\right)\)
\(B\text{=}\dfrac{300}{202}\)
A = \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\)
A = \(\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
A = \(\frac{1}{2}\left(1-\frac{1}{101}\right)=\frac{1}{2}.\frac{100}{101}\)
A = \(\frac{50}{101}\)
B = \(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{630}\)
B = \(1+\frac{2}{6}+\frac{2}{12}+\frac{1}{20}+...+\frac{2}{1260}\)
B = \(1+2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{35.36}\right)\)
B = \(1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{35}-\frac{1}{36}\right)\)
B = \(1+2\left(\frac{1}{2}-\frac{1}{36}\right)=1+2.\frac{17}{36}\)
B = \(1+\frac{17}{18}\)
B = \(\frac{35}{18}\)
Gọi biểu thức đó là A
\(A=\frac{3}{2}\left[\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{101}\right]\)
\(A=\frac{3}{2}\left[1-\frac{1}{101}\right]\)
\(A=\frac{3}{2}.\frac{100}{101}=\frac{300}{202}=\frac{150}{101}\)
Mk nghĩ là vậy đó
Chúc bạn học tốt !
\(A=\frac{3}{1.3}+\frac{3}{3.5}+...+\frac{3}{99.101}\)
\(A=3.\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\right)\)
\(2A=3.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)
\(2A=3.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(2A=3.\left(1-\frac{1}{101}\right)\)
\(2A=3.\frac{100}{101}\)
\(\Rightarrow A=\frac{300}{101}:2\)
\(A=\frac{300}{101}.\frac{1}{2}\)
\(A=\frac{150}{101}\)
Dấu "." là dấu nhân b nhé
\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{99.101}\)
\(\Rightarrow A=\frac{3}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{99.101}\right)\)
\(\Rightarrow A=\frac{3}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(\Rightarrow A=\frac{3}{2}.\left(1-\frac{1}{101}\right)=\frac{3}{2}.\frac{100}{101}=\frac{3.50.2}{2.101}=\frac{150}{101}\)