K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2019

a3-a2x-ay+ay

=a3-a2x

=a2(a-x)

(nếu đề là phân tích đa thức thành nhân tử bn nhé)

chúc bn hc tốt

5 tháng 10 2015

a) 

5x-5y+ax-ay = 5(x-y) +a(x-y) = (x-y)(5+a)

b) a^3 -a^2x-ay+xy = a^2(a-x) -y(a-x) = (a-x)(a^2-y)

c) xy(x+y) +yz(y+z) +xz(x+z) +2xyz = x^2.y+xy^2 +y^2.z+xz^2 +x^2.z+xz^2 +2xyz

= (x^2.y+x^2.z)+(xy^2+xz^2+2xyz)+(y^2.z+yz^2) = x^2(y+z) +x.(y+z)^2 +yz(y+z)

=(y+z)(x^2+x+yz)

19 tháng 7 2019

\(5x-5y+ax-ay=5\left(x-y\right)+a\left(x-y\right)=\left(5+a\right)\left(x-y\right)\)

\(a^3-a^2x-ay+xy=a^2\left(a-x\right)-y\left(a-x\right)=\left(a^2-y\right)\left(a-x\right)\)

\(10x^2+10xy+5x+5y=10x\left(x+y\right)+5\left(x+y\right)=5\left(2x+1\right)\left(x+y\right)\) \(5ay-3bx+ax-15by=a\left(5y+x\right)-3b\left(5y+x\right)=\left(a-3b\right)\left(5y+x\right)\) \(x^3+x^2-x-1=x^2\left(x+1\right)-\left(x+1\right)=\left(x^2-1\right)\left(x+1\right)=\left(x+1\right)^2\left(x-1\right)\) \(2bx-3ay-6by+ax=x\left(2b+a\right)-3y\left(2b+a\right)=\left(x-3y\right)\left(2b+a\right)\)

\(x+2a\left(x-y\right)-y=\left(x-y\right)+2a\left(x-y\right)=\left(1+2a\right)\left(x-y\right)\)

15 tháng 10 2017

a) ko bt làm

25 tháng 7 2017

Bài 1 : 

a ) \(x^2-6x-y^2+9=\left(x^2-6x+9\right)-y^2=\left(x-3\right)^2-y^2=\left(x-3+y\right)\left(x-3-y\right)\)

b)  \(25-4x^2-4xy-y^2=5^2-\left(4x^2+4xy+y^2\right)=5^2-\left(2x+y\right)^2=\left(5+2x+y\right)\left(5-2x-y\right)\)

c)  \(x^2+2xy+y^2-xz-yz=\left(x+y\right)^2-z.\left(x+y\right)=\left(x+y\right)\left(x+y-z\right)\)

d)   \(x^2-4xy+4y^2-z^2+4tz-4t^2=\left(x^2-4xy+4y^2\right)-\left(z^2-4tz+4t^2\right)\)

\(=\left(x-2y\right)^2-\left(z-2t\right)^2=\left(x-2y+z-2t\right).\left(x-2y-z+2t\right)\)

BÀi 2 : 

a)   \(ax^2+cx^2-ay+ay^2-cy+cy^2=\left(ax^2+cx^2\right)-\left(ay+cy\right)+\left(ay^2+cy^2\right)\)

\(=x^2.\left(a+c\right)-y\left(a+c\right)+y^2.\left(a+c\right)=\left(a+c\right).\left(x^2-y+y^2\right)\)

b)   \(ax^2+ay^2-bx^2-by^2+b-a=\left(ax^2-bx^2\right)+\left(ay^2-by^2\right)-\left(a-b\right)\)

\(=x^2.\left(a-b\right)+y^2.\left(a-b\right)-\left(a-b\right)=\left(a-b\right)\left(x^2+y^2-1\right)\)

c)  \(ac^2-ad-bc^2+cd+bd-c^3=\left(ac^2-ad\right)+\left(cd+bd\right)-\left(bc^2+c^3\right)\)

\(=-a.\left(d-c^2\right)+d.\left(b+c\right)-c^2.\left(b+c\right)=\left(b+c\right).\left(d-c^2\right)-a\left(d-c^2\right)\)

\(=\left(b+c-a\right)\left(d-c^2\right)\)

BÀi 3 : 

a)  \(x.\left(x-5\right)-4x+20=0\) \(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x-5=0\\x-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\x=4\end{cases}}}\)

b)  \(x.\left(x+6\right)-7x-42=0\)\(\Leftrightarrow x.\left(x+6\right)-7.\left(x+6\right)=0\) \(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x+6=0\\x-7=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-6\\x=7\end{cases}}}\)

c)   \(x^3-5x^2+x-5=0\) \(\Leftrightarrow x^2.\left(x-5\right)+\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x^2+1\right)\)

\(\Leftrightarrow\hept{\begin{cases}x^2+1=0\\x-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=-1\left(KTM\right)\\x=5\end{cases}}}\)

d)   \(x^4-2x^3+10x^2-20x=0\) \(\Leftrightarrow x.\left(x^3-2x^2+10x-20\right)=0\)\(\Leftrightarrow x.\left[x^2.\left(x-2\right)+10.\left(x-2\right)\right]=0\)  \(\Leftrightarrow x.\left(x-2\right)\left(x^2+10=0\right)\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x-2=0\\x^2+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=2\\x^2=-10\left(KTM\right)\end{cases}}}\)

13 tháng 8 2018

a)  bạn ktra lại đề

b) \(x^2y+xy+x+1=xy\left(x+1\right)+\left(x+1\right)=\left(xy+1\right)\left(x+1\right)\)

c) \(ax+by+ay+bx=a\left(x+y\right)+b\left(x+y\right)=\left(a+b\right)\left(x+y\right)\)

d)  \(x^2-\left(a+b\right)x+ab=x^2-ax-bx+ab=x\left(x-a\right)-b\left(x-a\right)=\left(x-a\right)\left(x-b\right)\)

e)  \(x^2y+xy^2-x-y=xy\left(x+y\right)-\left(x+y\right)=\left(xy-1\right)\left(x+y\right)\)

f)  \(ax ^2+ay-bx^2-by=x^2\left(a-b\right)+y\left(a-b\right)=\left(a-b\right)\left(x^2+y\right)\)

30 tháng 9 2018

\(x^2y+xy+x+1\)

\(=xy\left(x+1\right)+\left(x+1\right)\)

\(=\left(x+1\right)\left(xy+1\right)\)

hk tốt

^^

26 tháng 8 2020

a) a3 - a2x - ay + xy

= a2( a - x ) - y( a - x )

= ( a - x )( a2 - y )

b) x2 + 5x - 6

= x2 - x + 6x - 6

= x( x - 1 ) + 6( x - 1 )

= ( x - 1 )( x + 6 )

26 tháng 8 2020

1) 

\(=a^2\left(a-x\right)-y\left(a-x\right)\)             

\(=\left(a-x\right)\left(a^2-y\right)\)    

2) 

\(=x^2+2x+3x+6\)     

\(=x\left(x+2\right)+3\left(x+2\right)\)    

\(=\left(x+2\right)\left(x+3\right)\)                  

8 tháng 8 2016

=(a^3-a^2x)-(ay-xy)

=a^2(a-x)-y(a-x)

=(a^2-y)(a-x)

8 tháng 8 2016

\(a^3-a^2x-ay+xy\)

\(=\left(a^3-a^2x\right)-\left(ay-xy\right)\)

\(=a^2\left(a-x\right)-y\left(a-x\right)\)

\(=\left(a^2-y\right)\left(a-x\right)\)

1 tháng 7 2018

a) \(x^3-2x^2+2x-1^3\)

\(=x\left(x^2-2x+1\right)+x-1\)

\(=x\left(x-1\right)+\left(x-1\right)\)

\(=\left(x+1\right)\left(x-1\right)\)

b) \(x^2y+xy+x+1\)

\(=xy\left(x+1\right)+\left(x+1\right)\)

\(=\left(xy+1\right)\left(x+1\right)\)

c) \(ax+by+ay+bx\)

\(=a\left(x+y\right)+b\left(x+y\right)\)

\(=\left(a+b\right)\left(x+y\right)\)

d) \(x^2-\left(a+b\right)x+ab\)

\(=x^2-ax-bx+ab\)

\(=\left(x^2-ax\right)-\left(bx-ab\right)\)

\(=x\left(x-a\right)-b\left(x-a\right)\)

\(=\left(x-b\right)\left(x-a\right)\)

e) Ko biết làm

f) \(ax^2+ay-bx^2-by\)

\(=\left(ax^2+ay\right)-\left(bx^2+by\right)\)

\(=a\left(x^2+y\right)-b\left(x^2+y\right)\)

\(=\left(a-b\right)\left(x^2+y\right)\)

1 tháng 7 2018

a, x3 - 2x2 + 2x - 13

= x3 - 2x2 . 1+ 2x.12 - 13

= (x - 3 )3

13 tháng 8 2017

a3 - a2x - ay + xy

= (a3 - a2x) - (ay - xy)

= a2(a - x) - y(a - x)

= (a - x)(a2 - y)