Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5x-5y+ax-ay=5\left(x-y\right)+a\left(x-y\right)=\left(5+a\right)\left(x-y\right)\)
\(a^3-a^2x-ay+xy=a^2\left(a-x\right)-y\left(a-x\right)=\left(a^2-y\right)\left(a-x\right)\)
\(10x^2+10xy+5x+5y=10x\left(x+y\right)+5\left(x+y\right)=5\left(2x+1\right)\left(x+y\right)\) \(5ay-3bx+ax-15by=a\left(5y+x\right)-3b\left(5y+x\right)=\left(a-3b\right)\left(5y+x\right)\) \(x^3+x^2-x-1=x^2\left(x+1\right)-\left(x+1\right)=\left(x^2-1\right)\left(x+1\right)=\left(x+1\right)^2\left(x-1\right)\) \(2bx-3ay-6by+ax=x\left(2b+a\right)-3y\left(2b+a\right)=\left(x-3y\right)\left(2b+a\right)\)
\(x+2a\left(x-y\right)-y=\left(x-y\right)+2a\left(x-y\right)=\left(1+2a\right)\left(x-y\right)\)
Bài 1 :
a ) \(x^2-6x-y^2+9=\left(x^2-6x+9\right)-y^2=\left(x-3\right)^2-y^2=\left(x-3+y\right)\left(x-3-y\right)\)
b) \(25-4x^2-4xy-y^2=5^2-\left(4x^2+4xy+y^2\right)=5^2-\left(2x+y\right)^2=\left(5+2x+y\right)\left(5-2x-y\right)\)
c) \(x^2+2xy+y^2-xz-yz=\left(x+y\right)^2-z.\left(x+y\right)=\left(x+y\right)\left(x+y-z\right)\)
d) \(x^2-4xy+4y^2-z^2+4tz-4t^2=\left(x^2-4xy+4y^2\right)-\left(z^2-4tz+4t^2\right)\)
\(=\left(x-2y\right)^2-\left(z-2t\right)^2=\left(x-2y+z-2t\right).\left(x-2y-z+2t\right)\)
BÀi 2 :
a) \(ax^2+cx^2-ay+ay^2-cy+cy^2=\left(ax^2+cx^2\right)-\left(ay+cy\right)+\left(ay^2+cy^2\right)\)
\(=x^2.\left(a+c\right)-y\left(a+c\right)+y^2.\left(a+c\right)=\left(a+c\right).\left(x^2-y+y^2\right)\)
b) \(ax^2+ay^2-bx^2-by^2+b-a=\left(ax^2-bx^2\right)+\left(ay^2-by^2\right)-\left(a-b\right)\)
\(=x^2.\left(a-b\right)+y^2.\left(a-b\right)-\left(a-b\right)=\left(a-b\right)\left(x^2+y^2-1\right)\)
c) \(ac^2-ad-bc^2+cd+bd-c^3=\left(ac^2-ad\right)+\left(cd+bd\right)-\left(bc^2+c^3\right)\)
\(=-a.\left(d-c^2\right)+d.\left(b+c\right)-c^2.\left(b+c\right)=\left(b+c\right).\left(d-c^2\right)-a\left(d-c^2\right)\)
\(=\left(b+c-a\right)\left(d-c^2\right)\)
BÀi 3 :
a) \(x.\left(x-5\right)-4x+20=0\) \(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x-5=0\\x-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\x=4\end{cases}}}\)
b) \(x.\left(x+6\right)-7x-42=0\)\(\Leftrightarrow x.\left(x+6\right)-7.\left(x+6\right)=0\) \(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x+6=0\\x-7=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-6\\x=7\end{cases}}}\)
c) \(x^3-5x^2+x-5=0\) \(\Leftrightarrow x^2.\left(x-5\right)+\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x^2+1\right)\)
\(\Leftrightarrow\hept{\begin{cases}x^2+1=0\\x-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=-1\left(KTM\right)\\x=5\end{cases}}}\)
d) \(x^4-2x^3+10x^2-20x=0\) \(\Leftrightarrow x.\left(x^3-2x^2+10x-20\right)=0\)\(\Leftrightarrow x.\left[x^2.\left(x-2\right)+10.\left(x-2\right)\right]=0\) \(\Leftrightarrow x.\left(x-2\right)\left(x^2+10=0\right)\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x-2=0\\x^2+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=2\\x^2=-10\left(KTM\right)\end{cases}}}\)
a) bạn ktra lại đề
b) \(x^2y+xy+x+1=xy\left(x+1\right)+\left(x+1\right)=\left(xy+1\right)\left(x+1\right)\)
c) \(ax+by+ay+bx=a\left(x+y\right)+b\left(x+y\right)=\left(a+b\right)\left(x+y\right)\)
d) \(x^2-\left(a+b\right)x+ab=x^2-ax-bx+ab=x\left(x-a\right)-b\left(x-a\right)=\left(x-a\right)\left(x-b\right)\)
e) \(x^2y+xy^2-x-y=xy\left(x+y\right)-\left(x+y\right)=\left(xy-1\right)\left(x+y\right)\)
f) \(ax ^2+ay-bx^2-by=x^2\left(a-b\right)+y\left(a-b\right)=\left(a-b\right)\left(x^2+y\right)\)
\(x^2y+xy+x+1\)
\(=xy\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(xy+1\right)\)
hk tốt
^^
a) a3 - a2x - ay + xy
= a2( a - x ) - y( a - x )
= ( a - x )( a2 - y )
b) x2 + 5x - 6
= x2 - x + 6x - 6
= x( x - 1 ) + 6( x - 1 )
= ( x - 1 )( x + 6 )
1)
\(=a^2\left(a-x\right)-y\left(a-x\right)\)
\(=\left(a-x\right)\left(a^2-y\right)\)
2)
\(=x^2+2x+3x+6\)
\(=x\left(x+2\right)+3\left(x+2\right)\)
\(=\left(x+2\right)\left(x+3\right)\)
a) \(x^3-2x^2+2x-1^3\)
\(=x\left(x^2-2x+1\right)+x-1\)
\(=x\left(x-1\right)+\left(x-1\right)\)
\(=\left(x+1\right)\left(x-1\right)\)
b) \(x^2y+xy+x+1\)
\(=xy\left(x+1\right)+\left(x+1\right)\)
\(=\left(xy+1\right)\left(x+1\right)\)
c) \(ax+by+ay+bx\)
\(=a\left(x+y\right)+b\left(x+y\right)\)
\(=\left(a+b\right)\left(x+y\right)\)
d) \(x^2-\left(a+b\right)x+ab\)
\(=x^2-ax-bx+ab\)
\(=\left(x^2-ax\right)-\left(bx-ab\right)\)
\(=x\left(x-a\right)-b\left(x-a\right)\)
\(=\left(x-b\right)\left(x-a\right)\)
e) Ko biết làm
f) \(ax^2+ay-bx^2-by\)
\(=\left(ax^2+ay\right)-\left(bx^2+by\right)\)
\(=a\left(x^2+y\right)-b\left(x^2+y\right)\)
\(=\left(a-b\right)\left(x^2+y\right)\)
a3 - a2x - ay + xy
= (a3 - a2x) - (ay - xy)
= a2(a - x) - y(a - x)
= (a - x)(a2 - y)
a3-a2x-ay+ay
=a3-a2x
=a2(a-x)
(nếu đề là phân tích đa thức thành nhân tử bn nhé)
chúc bn hc tốt