Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,a^2\left(a-b\right)+ab\left(a-c\right)=a\left(a+b\right)\left(a-c\right)\\ c,=\left(x^2-2x+1\right)\left(x^2+2x+1\right)=\left(x-1\right)^2\left(x+1\right)^2\\ b,=\left(x-5\right)^2-9y^2=\left(x-5-3y\right)\left(x-5+3y\right)\\ d,=4\left(x^2-9x+14\right)=4\left(x-7\right)\left(x-2\right)\)
Thực hiện phép nhân đa thức với đa thức ở vế trái.
=> VT = VP (đpcm)
Ta có
a 4 + a 3 + a 3 b + a 2 b = a 4 + a 3 + a 3 b + a 2 b = a 3 a + 1 + a 2 b a + 1 = a + 1 a 3 + a 2 b = a + 1 a 2 a + b = a 2 a + b a + 1
Đáp án cần chọn là: A
\(=\left(\dfrac{2}{3}a\right)^3-3.\left(\dfrac{2}{3}\right)^2a^2.2b+3.\dfrac{2}{3}a.4b^2-\left(2b\right)^3=\left(\dfrac{2}{3}a-2b\right)^3\)
Lời giải:
Do $a,b,c\in [0;1]$ nên:
$a^2(1-b)\leq 0$
$b^2(1-c)\leq 0$
$c^2(1-a)\leq 0$
Cộng theo vế suy ra: $a^2+b^2+c^2\leq a^2b+b^2c+c^2a$
Ta có đpcm.
a) \(45a^3-30a^2+5a-500=5\left(9a^3-6a^2+a-100\right)\)
b) \(a^2b-49b+14b^2-b^3=b\left(a^2-b^2+14b-49\right)=b\left[a^2-\left(b-7\right)^2\right]=b\left(a-b+7\right)\left(a+b-7\right)\)
Tick hộ tui nha 😘
Phân tích hả
Ta có : a3 - a2c + a2b - abc
= ( a3 + a2b ) - ( a2c + abc )
= a2( a + b ) - ac( a + b )
= a( a + b )( a - c )