Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)
\(\Leftrightarrow\frac{a}{b-c}=\frac{b}{a-c}+\frac{c}{b-a}\)
\(\Leftrightarrow\frac{a}{b-c}=\frac{b\left(b-a\right)+c\left(a-c\right)}{\left(a-c\right)\left(b-a\right)}\)
\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}=\frac{b^2-ab+ca-c^2}{\left(a-c\right)\left(b-a\right)\left(b-c\right)}\)(1)
Tương tự ta cũng có :
\(\frac{b}{\left(c-a\right)^2}=\frac{c^2-bc+ab-a^2}{\left(b-a\right)\left(c-b\right)\left(c-a\right)}\)(2)
\(\frac{c}{\left(a-b\right)^2}=\frac{a^2-ca+bc-b^2}{\left(c-b\right)\left(a-b\right)\left(a-c\right)}\)(3)
Cộng theo vế (1), (2) và (3) :
\(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=\frac{b^2-ab+ca-c^2+c^2-bc+ab-a^2+a^2-ca+bc-b^2}{\left(a-c\right)\left(b-a\right)\left(b-c\right)}\)
\(=\frac{0}{\left(a-c\right)\left(b-a\right)\left(b-c\right)}=0\) ( đpcm )
1)Cho a,b,c >0
Chứng minh bc/a^2(b+c) + ca/b^2(c+a) +ab/c^2(a+b) > hoặc = 1/2(1/a+1/b+1/c)
2) Cho a,b,c>0 1/a + 1/b + 1/c =1
Chứng minh (b+c)/a^2 + (c+a)/b^2 + (a+b)/c^2 > hoặc = 2
Đọc tiếp...
\(a+b+c=\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)\)
\(=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+\frac{ab}{a+c}+\frac{ac}{a+b}+\frac{ab}{b+c}+\frac{bc}{a+b}+\frac{ac}{b+c}+\frac{bc}{a+c}\)
\(=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+a+b+c\)
\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)
a/ \(\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ac+a^2}\)
\(=\dfrac{a^4}{a^3+a^2b+ab^2}+\dfrac{b^4}{b^3+b^2c+bc^2}+\dfrac{c^4}{c^3+ac^2+ca^2}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a\left(a^2+ab+b^2\right)+b\left(b^2+bc+c^2\right)+c\left(c^2+ca+a^2\right)}\)
\(=\dfrac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)\left(a^2+b^2+c^2\right)}=\dfrac{a^2+b^2+c^2}{a+b+c}\)
b/ \(\dfrac{a^3}{bc}+\dfrac{b^3}{ac}+\dfrac{c^3}{ab}=\dfrac{a^4}{abc}+\dfrac{b^4}{abc}+\dfrac{c^4}{abc}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{3abc}=\dfrac{3\left(a^2+b^2+c^2\right)^2}{3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}\)
\(\ge\dfrac{3\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)\left(a+b+c\right)}=\dfrac{3\left(a^2+b^2+c^2\right)^2}{a+b+c}\)
\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)
\(=a\left(\frac{a}{b+c}\right)+b\left(\frac{b}{a+c}\right)+c\left(\frac{c}{a+b}\right)\)
\(=a\left(\frac{a}{b+c}+1-1\right)+b\left(\frac{b}{a+c}+1-1\right)+c\left(\frac{c}{a+b}+1-1\right)\)
\(=\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)-\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}-1\right)=0\)