\(a^2+b^2+c^2=a+2b+3c=14\)tìm giá trị của t=abc

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2017

Ta có:

\(\hept{\begin{cases}a^2+b^2+c^2=14\\a+2b+3c=14\end{cases}\Leftrightarrow\hept{\begin{cases}a^2+b^2+c^2=14\\2a+4b+6c=28\end{cases}}}\)

\(\Rightarrow a^2+b^2+c^2-2a-4b-6c=-14\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-2\right)^2+\left(c-3\right)^2=0\)

\(\Leftrightarrow a=1;c=2;c=3\)

Vậy \(T=abc=6\)

10 tháng 10 2018

Ta có : \(\left\{{}\begin{matrix}a^2+b^2+c^2=14\\a+2b+3c=14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2+c^2=14\left(1\right)\\2a+4b+6c=28\left(2\right)\end{matrix}\right.\)

Lấy \(\left(1\right)-\left(2\right)\Rightarrow a^2-2a+b^2-4b+c^2-6c=-14\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-4b+4\right)+\left(c^2-6c+9\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-2\right)^2+\left(c-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-1\right)^2=0\\\left(b-2\right)^2=0\\\left(c-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\\c=3\end{matrix}\right.\)

\(\Rightarrow T=abc=1.2.3=6\)

Vậy \(T=6\)

3 tháng 4 2020

\(M=\left(a-\frac{6}{a+1}\right)+\left(2b-\frac{3}{b+1}\right)+\left(3c-\frac{2}{c+1}\right)\)

\(M=\left(a+2b+3c\right)-6\left(\frac{1}{a+1}+\frac{1}{2b+2}+\frac{1}{3c+3}\right)\)

\(M\le6-\frac{6.\left(1+1+1\right)^2}{a+1+2b+2+3c+3}\)

\(M\le6-\frac{6.9}{6+6}=6-\frac{9}{2}=\frac{3}{2}\)

Đẳng thức xảy ra khi \(a=3;b=1;c=\frac{1}{3}\)

3 tháng 4 2017

Sửa đề: Cho thêm a,b,c dương

Áp dụng BĐT AM-GM ta có:

\(a^2+2b^2+3c^2\ge6\sqrt[6]{a^2\cdot b^2\cdot b^2\cdot c^2\cdot c^2\cdot c^2}=6\sqrt[6]{a^2b^4c^6}\)

\(\Rightarrow3abc\ge6\sqrt[6]{a^2b^4c^6}\Leftrightarrow abc\ge2\sqrt[6]{a^2b^4c^6}\)

\(\Leftrightarrow a^6b^6c^6\ge64a^2b^4c^6\Leftrightarrow a^4b^2\ge64\Leftrightarrow a^2b\ge8\)

\(\Rightarrow2\le\sqrt[3]{a\cdot a\cdot b}\le\dfrac{2a+b}{3}\Leftrightarrow2a+b\ge6\)

Khi đó ta có: \(P=2a+\dfrac{8}{a}+\dfrac{3b}{2}+\dfrac{6}{b}+c+\dfrac{4}{c}+\dfrac{2a+b}{2}\)

Áp dụng tiếp BĐT AM-GM ta có:

\(P\ge2\sqrt{2a\cdot\dfrac{8}{a}}+2\sqrt{\dfrac{3b}{2}\cdot\dfrac{6}{b}}+2\sqrt{c\cdot\dfrac{4}{c}}+\dfrac{6}{2}\left(2a+b\ge6\right)\)

\(=2\sqrt{16}+2\sqrt{9}+2\sqrt{4}+3=8+6+4+3=21\)

Đẳng thức xảy ra khi \(a=b=c=2\)

4 tháng 4 2017

Người ta bảo tính giá trị của biểu thức chứ có bảo tìm cực trị của nó đâu.

7 tháng 11 2017

GT => (a+1)(b+1)(c+1)=(a+1)+(b+1)+(c+1)

Đặt \(\frac{1}{a+1}=x,\frac{1}{1+b}=y,\frac{1}{c+1}=z\), ta cần tìm min của\(\frac{x}{x^2+1}+\frac{y}{y^2+1}+\frac{z}{z^2+1}\)với xy+yz+zx=1

\(\Leftrightarrow\frac{x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\Leftrightarrow\frac{2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)Mà  (x+y)(y+z)(z+x) >= 8/9 (x+y+z)(xy+yz+xz) >= \(\frac{8\sqrt{3}}{9}\) nên \(M\)=< \(\frac{3\sqrt{3}}{4}\),dấu bằng xảy ra khi a=b=c=\(\sqrt{3}-1\)

2 tháng 6 2020

Theo giả thiết, ta có: \(abc+ab+bc+ca=2\)

\(\Leftrightarrow abc+ab+bc+ca+a+b+c+1=a+b+c+3\)

\(\Leftrightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)=\left(a+1\right)+\left(b+1\right)+\left(c+1\right)\)

\(\Leftrightarrow\frac{1}{\left(a+1\right)\left(b+1\right)}+\frac{1}{\left(b+1\right)\left(c+1\right)}+\frac{1}{\left(c+1\right)\left(a+1\right)}=1\)

Đặt \(\left(a+1;b+1;c+1\right)\rightarrow\left(\frac{\sqrt{3}}{x};\frac{\sqrt{3}}{y};\frac{\sqrt{3}}{z}\right)\). Khi đó giả thiết bài toán được viết lại thành xy + yz + zx = 3 

Ta có: \(M=\Sigma_{cyc}\frac{a+1}{a^2+2a+2}=\Sigma_{cyc}\frac{a+1}{\left(a+1\right)^2+1}\)\(=\Sigma_{cyc}\frac{1}{a+1+\frac{1}{a+1}}=\Sigma_{cyc}\frac{1}{\frac{\sqrt{3}}{x}+\frac{x}{\sqrt{3}}}\)

\(=\sqrt{3}\left(\frac{x}{x^2+3}+\frac{y}{y^2+3}+\frac{z}{z^2+3}\right)\)

\(=\sqrt{3}\text{​​}\Sigma_{cyc}\left(\frac{x}{x^2+xy+yz+zx}\right)=\sqrt{3}\Sigma_{cyc}\frac{x}{\left(x+y\right)\left(x+z\right)}\)

\(\le\frac{\sqrt{3}}{4}\Sigma_{cyc}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)=\frac{3\sqrt{3}}{4}\)

Đẳng thức xảy ra khi \(x=y=z=1\)hay \(a=b=c=\sqrt{3}-1\)

cũng hợp lí á, đáp án đúng

25 tháng 8 2021

Ta có \(d\in Z\)và \(d< 5\Leftrightarrow max\left(d\right)=4\)

Ta lại có \(c< 4\left(d\right)\)mà \(max\left(d\right)=4\Leftrightarrow max\left(c\right)< 16\)mà \(c\in Z\Leftrightarrow max\left(c\right)=15\)

Tương tự \(b< 3c\Rightarrow b< 45\)mà \(b\in Z\Leftrightarrow max\left(b\right)=44\)

                 \(a< 2b\Rightarrow a< 88\)mà \(a\in Z\Leftrightarrow max\left(a\right)=87\)

Vậy giá trị lớn nhất của a là 87

1 tháng 3 2021

Theo giả thiết, ta có: \(2b-ab-4\ge0\Rightarrow2b\ge ab+4\ge4\sqrt{ab}\)

\(\Rightarrow\frac{b}{\sqrt{ab}}\ge2\Rightarrow\frac{b}{a}\ge4\)

Xét \(\frac{1}{T}=\frac{ab}{a^2+2b^2}=\frac{1}{\frac{a}{b}+\frac{2b}{a}}=\frac{1}{\frac{a}{b}+\frac{b}{16a}+\frac{31b}{16a}}\le\frac{1}{2\sqrt{\frac{1}{16}}+\frac{31}{16}.4}=\frac{4}{33}\)

\(\Rightarrow T\ge\frac{33}{4}\)

Đẳng thức xảy ra khi a = 1; b = 4