K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2018

\(a^2+b^2-2ab=\left(a-b\right)^2\ge0\forall a,b\)

Dễ mà bạn

Ta có: \(a^2+b^2-2ab=\left(a-b\right)^2\ge0\forall a,b\)

5 tháng 6 2020

dễ với những đứa giỏi toán thôi =)))

19 tháng 12 2016

Có: \(a^2+b^2=1-2ab\)

\(\Rightarrow a^2+b^2+2ab=1\Rightarrow\left(a+b\right)^2=1\)

Mà: \(a>0;b>0\Rightarrow a+b>0\)

Do đó: \(a+b=1\)

Có: \(M=a^3+b^3+3ab=a^3+b^3+3ab\left(a+b\right)=\left(a+b\right)^3=1^3=1\)

19 tháng 12 2016

Ta có : M=a3+b3+3ab

=(a+b)(a2-ab+b2)+3ab=(a+b)(a2+b2-ab)+3ab

Ma : a2+b2=1-2ab 

\(\Rightarrow\)(a+b)(a2+b2-ab)+3ab

=(a+b)(1-2ab-ab)+3ab

=(a+b)(1-3ab)+3ab

=a+b

​Ma : a và b là hai số dương \(\Rightarrow\)a>0 va b>0
\(\Rightarrow\)Gia tri cua bieu thuc M=a3+b3+3ab = a+b .

22 tháng 12 2016

a^2 - 2ab - 3b^2 = 0

<=> a^2 - 3ab + ab - 3b^2 = 0

<=> a(a - 3b) + b(a - 3b) = 0

<=> (a - 3b)(a + b) = 0

=> a - 3b = 0 hoặc a + b = 0

=> a = 3b hoặc a = -b

+ Nếu a = 3b

A = (7a+2b)/(2a+b) + (9a-5b)/(2a-b)

A = (7.3b+2b)/(2.3b+b) + (9.3b-5b)/(2.3b-b)

A = 23b/7b + 22b/5b

A = 23/7 + 22/5 = 269/35

+ Nếu a = -b

A = (7a+2b)/(2a+b) + (9a-5b)/(2a-b)

A = (-7b+2b)/(-2b+b) + (-9b-5b)/(-2b-b)

A = -5b/-b + (-14b/-3b)

A = 5 + 14/3 = 29/3

22 tháng 6 2016

Phiển bạn bổ sung đề ! Ko phải chép lại đề đâu, bạn chỉ cần sửa nội dung thôi , hoặc nếu ko bt cách sửa nội dung thì bạn có thể trả lời xuống dưới này. 

đề là cái j ko thấy mặt mũi cái đề sao bít mà làm!! ~_~ @@

576586787697890780899635654767546

3 tháng 1 2017

Từ \(a^2-6b^2=-ab\Rightarrow a^2-6b^2+ab=0\)

\(\Rightarrow a^2+3ab-2ab-6b^2=0\)

\(\Rightarrow a\left(a+3b\right)-2b\left(a+3b\right)=0\)

\(\Rightarrow\left(a+3b\right)\left(a-2b\right)=0\)

\(\Rightarrow\orbr{\begin{cases}a+3b=0\\a-2b=0\end{cases}}\Rightarrow\orbr{\begin{cases}a=-3b\\a=2b\end{cases}}\)

  • Xét \(a=-3b\) thay vào M ta có:

\(M=\frac{2\cdot3\left(-b\right)\cdot b}{2\left(-3b\right)^2-3b^2}=\frac{-6b^2}{15b^2}=-\frac{2}{5}\)

  • Xét \(a=2b\) thay vào M ta có:

\(M=\frac{2\cdot2b\cdot b}{2\cdot\left(2b\right)^2-3b^2}=\frac{4b^2}{8b^2-3b^2}=\frac{4b^2}{5b^2}=\frac{4}{5}\)