Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(D=1+2+3+4+....+1996\)
Công thức tính tổng một dãy số cách đều 1 đơn vị là: \(\dfrac{n\cdot\left(n+1\right)}{2}\)
\(D=\dfrac{1996\cdot\left(1996+1\right)}{2}=1993006\)
Và\(\dfrac{1993006}{998}=1997\)
Ta có : \(\left[2\cdot3^{15}\cdot3^8-5\cdot3^2\cdot9^4\right]:1997-1817\)
=\(\left[2\cdot3^{23}-5\cdot3^2\cdot3^8\right]:1997-1817\)
=\(\left[2\cdot3^{23}-\left(2+3\right)\cdot3^{10}\right]:1997-1817\)
=\(\left(2\cdot3^{23}-2\cdot3^{10}-3\cdot3^{10}\right):1997-1817\)
=\(\left[2\cdot\left(3^{23}-3^{10}\right)-3^{11}\right]:1997-1817\)
= \(\text{94284457,59}-1817\)
( Kết quả phép tính trong ngoặc quá to nên mình ghi luôn kết quả thông cảm cho mình )
= \(\text{94282640},59\)
Kết quả bài này ra số thập phân quá cao là \(\text{94282640},59\)
a) \(3^2.\dfrac{1}{243}.81^2.\dfrac{1}{3^3}\)
\(=3^2.\dfrac{1}{3^5}.(3^4)^2.\dfrac{1}{3^3}\)
\(=(3^2.\dfrac{1}{3^3}).\left(\dfrac{1}{3^5}.3^8\right)\)
\(=\dfrac{1}{3}.27\)
\(=9\)
b)\(\left(4.2^5\right):\left(2^3.\dfrac{1}{16}\right)\)
\(=\left(2^2.2^5\right):\left(2^3.\dfrac{1}{2^4}\right)\)
\(=2^7:\dfrac{1}{2}\)
\(=2^8\)
a, (0,25)3.32
= 0,5
b, \(\dfrac{72^3.54^2}{108^4}=\dfrac{\left(2^3.3^2\right)^3.\left(2.3^3\right)^2}{\left(2^2.3^3\right)^4}\)\(=\dfrac{2^9.3^6.2^2.3^6}{2^8.3^{12}}\)
\(=\dfrac{2^{11}.3^{12}}{2^8.3^{12}}=2^3\)
c, \(\dfrac{81^{11}.3^{17}}{27^{10}.9^{15}}=\dfrac{\left(3^4\right)^{11}.3^{17}}{\left(3^3\right)^{10}.\left(3^2\right)^{15}}=\dfrac{3^{44}.3^{17}}{3^{30}.3^{30}}\)\(=\dfrac{3^{61}}{3^{60}}=3\)
@Lớp 6B Đoàn Kết
\(\dfrac{3}{5.7}+\dfrac{3}{7.9}+...+\dfrac{3}{59.61}\)
= \(\dfrac{2}{2}.\left(\dfrac{3}{5.7}+\dfrac{3}{7.9}+...+\dfrac{3}{59.61}\right)\)
= \(\dfrac{3}{2}.\left(\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{59.61}\right)\)
= \(\dfrac{3}{2}.\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\right)\)
= \(\dfrac{3}{2}.\left(\dfrac{1}{5}-\dfrac{1}{61}\right)\)
=\(\dfrac{3}{2}.\dfrac{56}{305}\)
= \(\dfrac{78}{305}\)
\(\left(x^2-4\right)\left(6-2x\right)=0\) ⇔ \(x^2-4=0\) hoặc \(6-2x=0\)
*Nếu \(x^2-4=0\)
⇒ x2 = 4
⇒ x ∈ {2 ; -2}
*Nếu \(6-2x=0\)
⇒2x = 6
⇒ x = 6 : 2 = 3
Vậy x ∈ { -2 ; 2 ; 3 }
2. Chứng tỏ:\(\dfrac{2}{5}< A< \dfrac{8}{9}.\)
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}.\)
Giải:
Ta có:
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}.\)
\(A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{9.9}.\)
\(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}.\)
\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}.\)
\(A< 1+\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)+...+\left(\dfrac{1}{8}-\dfrac{1}{8}\right)-\dfrac{1}{9}.\)
\(A< 1+0+0+0+...+0-\dfrac{1}{9}.\)
\(A< 1-\dfrac{1}{9}.\)
\(A< \dfrac{8}{9}_{\left(1\right)}.\)
Ta lại có:
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}.\)
\(A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{9.9}.\)
\(A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}.\)
\(A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}.\)
\(A>\dfrac{1}{2}+\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)+\left(\dfrac{1}{5}-\dfrac{1}{5}\right)+...+\left(\dfrac{1}{9}-\dfrac{1}{9}\right)-\dfrac{1}{10}.\)
\(A>\dfrac{1}{2}+0+0+0+...+\dfrac{1}{10}.\)
\(A>\dfrac{1}{2}-\dfrac{1}{10}.\)
\(A>\dfrac{4}{10}.\)
\(\Rightarrow A>\dfrac{2}{5}_{\left(2\right)}.\) (vì \(\dfrac{4}{10}=\dfrac{2}{5}.\))
Từ \(_{\left(1\right)}\) và \(_{\left(2\right)}\).
\(\Rightarrow A< \dfrac{8}{9}\) và \(A>\dfrac{2}{5}.\)
\(\Rightarrow\) \(\dfrac{8}{9}>A>\dfrac{2}{5}\) hay \(\dfrac{2}{5}< A< \dfrac{8}{9}.\)
Vậy ta thu được \(đpcm.\)
~ Học tốt!!!... ~ ^ _ ^
Câu 2 : Câu hỏi của Nguyễn Thu Hà - Toán lớp 6 | Học trực tuyến
1.Tính hợp lý:
a. 1152 - (374 + 1152) + (374 - 65) = 1152 - 374 - 1152 + 374 - 65 = ( 1152 - 1152 ) + ( -65) + ( 374 - 374 ) = 0 + ( - 65) + 0 = -65
Bài 1 : Tính hợp lý : c. \(\dfrac{11.3^{22}.3^7-9^{15}}{\left(2.3^{14}\right)^2}\) = \(\dfrac{11.3^{29}-3^{30}}{2^2.3^{28}}\) = \(\dfrac{3^{29}.\left(11-3\right)}{2^2.3^{28}}\) = \(\dfrac{3^{29}.2^3}{2^2.3^{28}}\) = 6
Bg
c) 9 < 3x : 3 < 81
=> 32 < 3x - 1 < 34
=> x - 1 = {2; 3; 4}
=> x = {3; 4; 5}
d) 5x . 5x + 1 . 5 x + 2 < 218 . 518 : 218
=> 5x + x + 1 + x + 2 < 218 : 218 . 518
=> 53x + 3 < 1.518
=> 53.(x + 1) < 518
=> 3.(x + 1) < 18
=> x + 1 < 18 : 3
=> x + 1 < 6
=> x < 6 - 1
=> x < 5
c. \(9\le3^x:3\le81\)
\(\Rightarrow3^2\le3^{x-1}\le3^4\)
\(\Rightarrow3^{x-1}\in\left\{3^2;3^3;3^4\right\}\)
\(\Rightarrow x-1\in\left\{2;3;4\right\}\)
\(\Rightarrow x\in\left\{3;4;5\right\}\)
d. Thêm đk : x thuộc N
\(5^x.5^{x+1}.5^{x+2}\le2^{18}.5^{18}:2^{18}\)
\(\Rightarrow5^{x+x+1+x+2}\le5^{18}\)
\(\Rightarrow x+x+x+1+2\le18\)
\(\Rightarrow3x+3\le18\)
\(\Rightarrow3\left(x+1\right)\le18\)
\(\Rightarrow x+1\le6\)
\(\Rightarrow x\le5\)
\(\Rightarrow x\in\left\{1;2;3;4;5\right\}\)
\(A=\left[2\cdot3^{15}\cdot3^8-5\cdot3^2\cdot3^{10}\right]\cdot\dfrac{998}{1993006}-1817\)
\(=\left[3^{23}\cdot2-5\cdot3^{12}\right]\cdot\dfrac{998}{1993006}-1817\)
\(=3^{12}\cdot\left[3^{11}\cdot2-5\right]\cdot\dfrac{998}{1993006}-1817\)
\(=\dfrac{1}{1997}\cdot3^{12}\cdot354289-1817\)
\(\simeq94281458.14\)