\(\dfrac{1+2+3+.....">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2018

Đặt \(D=1+2+3+4+....+1996\)

Công thức tính tổng một dãy số cách đều 1 đơn vị là: \(\dfrac{n\cdot\left(n+1\right)}{2}\)

\(D=\dfrac{1996\cdot\left(1996+1\right)}{2}=1993006\)

\(\dfrac{1993006}{998}=1997\)

Ta có : \(\left[2\cdot3^{15}\cdot3^8-5\cdot3^2\cdot9^4\right]:1997-1817\)

=\(\left[2\cdot3^{23}-5\cdot3^2\cdot3^8\right]:1997-1817\)

=\(\left[2\cdot3^{23}-\left(2+3\right)\cdot3^{10}\right]:1997-1817\)

=\(\left(2\cdot3^{23}-2\cdot3^{10}-3\cdot3^{10}\right):1997-1817\)

=\(\left[2\cdot\left(3^{23}-3^{10}\right)-3^{11}\right]:1997-1817\)

= \(\text{94284457,59}-1817\)

( Kết quả phép tính trong ngoặc quá to nên mình ghi luôn kết quả thông cảm cho mình )

= \(\text{94282640},59\)

Kết quả bài này ra số thập phân quá cao là \(\text{94282640},59\)

\(A=\left[2\cdot3^{15}\cdot3^8-5\cdot3^2\cdot3^{10}\right]\cdot\dfrac{998}{1993006}-1817\)

\(=\left[3^{23}\cdot2-5\cdot3^{12}\right]\cdot\dfrac{998}{1993006}-1817\)

\(=3^{12}\cdot\left[3^{11}\cdot2-5\right]\cdot\dfrac{998}{1993006}-1817\)

\(=\dfrac{1}{1997}\cdot3^{12}\cdot354289-1817\)

\(\simeq94281458.14\)

2 tháng 7 2017

a) \(3^2.\dfrac{1}{243}.81^2.\dfrac{1}{3^3}\)

\(=3^2.\dfrac{1}{3^5}.(3^4)^2.\dfrac{1}{3^3}\)

\(=(3^2.\dfrac{1}{3^3}).\left(\dfrac{1}{3^5}.3^8\right)\)

\(=\dfrac{1}{3}.27\)

\(=9\)

b)\(\left(4.2^5\right):\left(2^3.\dfrac{1}{16}\right)\)

\(=\left(2^2.2^5\right):\left(2^3.\dfrac{1}{2^4}\right)\)

\(=2^7:\dfrac{1}{2}\)

\(=2^8\)

3 tháng 7 2018

1)
\(=\dfrac{\left(2.3\right)^{20}.\left(5^2\right)^{19}}{\left(2^3\right)^7.\left(3^2\right)^{10}.\left(5^3\right)^{13}}\)
\(=\dfrac{2^{20}.3^{20}.5^{38}}{2^{21}.3^{20}.5^{39}}\)
\(=\dfrac{1}{2.5}\)
\(=\dfrac{1}{10}\)

31 tháng 7 2017

a, (0,25)3.32
= 0,5
b, \(\dfrac{72^3.54^2}{108^4}=\dfrac{\left(2^3.3^2\right)^3.\left(2.3^3\right)^2}{\left(2^2.3^3\right)^4}\)\(=\dfrac{2^9.3^6.2^2.3^6}{2^8.3^{12}}\)
\(=\dfrac{2^{11}.3^{12}}{2^8.3^{12}}=2^3\)
c, \(\dfrac{81^{11}.3^{17}}{27^{10}.9^{15}}=\dfrac{\left(3^4\right)^{11}.3^{17}}{\left(3^3\right)^{10}.\left(3^2\right)^{15}}=\dfrac{3^{44}.3^{17}}{3^{30}.3^{30}}\)\(=\dfrac{3^{61}}{3^{60}}=3\)
@Lớp 6B Đoàn Kết

NV
24 tháng 6 2019

\(A=3+3^2+...+3^{50}\)

\(\Rightarrow3A=3^2+3^3+...+3^{50}+3^{51}\)

\(\Rightarrow3A-A=3^{51}-3\)

\(\Rightarrow2A=3^{51}-3\)

\(\Rightarrow A=\frac{3^{51}-3}{2}\)

\(B=2-2^2+2^3-2^4+...+2^{2019}-2^{2020}\)

\(2B=2^2-2^3+2^4-2^5+...+2^{2020}-2^{2021}\)

\(B+2B=2-2^{2021}\)

\(3B=2-2^{2021}\)

\(B=\frac{2-2^{2021}}{3}\)

NV
24 tháng 6 2019

\(C=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2008.2009}\)

\(C=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2008}-\frac{1}{2009}\)

\(C=1-\frac{1}{2009}\)

\(C=\frac{2008}{2009}\)

\(D=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)

\(D=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)\)

\(D=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)

\(D=\frac{1}{2}\left(1-\frac{1}{11}\right)\)

\(D=\frac{1}{2}.\frac{10}{11}=\frac{5}{11}\)

25 tháng 4 2018

\(\dfrac{3}{5.7}+\dfrac{3}{7.9}+...+\dfrac{3}{59.61}\)

= \(\dfrac{2}{2}.\left(\dfrac{3}{5.7}+\dfrac{3}{7.9}+...+\dfrac{3}{59.61}\right)\)

= \(\dfrac{3}{2}.\left(\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{59.61}\right)\)

= \(\dfrac{3}{2}.\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\right)\)

= \(\dfrac{3}{2}.\left(\dfrac{1}{5}-\dfrac{1}{61}\right)\)

=\(\dfrac{3}{2}.\dfrac{56}{305}\)

= \(\dfrac{78}{305}\)

25 tháng 4 2018

\(\left(x^2-4\right)\left(6-2x\right)=0\)\(x^2-4=0\) hoặc \(6-2x=0\)

*Nếu \(x^2-4=0\)

⇒ x2 = 4

⇒ x ∈ {2 ; -2}

*Nếu \(6-2x=0\)

⇒2x = 6

⇒ x = 6 : 2 = 3

Vậy x ∈ { -2 ; 2 ; 3 }

31 tháng 7 2017

1.Tính hợp lý:

a. 1152 - (374 + 1152) + (374 - 65) = 1152 - 374 - 1152 + 374 - 65 = ( 1152 - 1152 ) + ( -65) + ( 374 - 374 ) = 0 + ( - 65) + 0 = -65

30 tháng 7 2017

Bài 1 : Tính hợp lý : c. \(\dfrac{11.3^{22}.3^7-9^{15}}{\left(2.3^{14}\right)^2}\) = \(\dfrac{11.3^{29}-3^{30}}{2^2.3^{28}}\) = \(\dfrac{3^{29}.\left(11-3\right)}{2^2.3^{28}}\) = \(\dfrac{3^{29}.2^3}{2^2.3^{28}}\) = 6

5 tháng 8 2020

Bg

c) 9 < 3x : 3 < 81

=> 32 < 3x - 1 < 34 

=> x - 1 = {2; 3; 4}

=> x = {3; 4; 5}

d) 5x . 5x + 1 . 5 x + 2 < 218 . 518 : 218 

=> 5x + x + 1 + x + 2 < 218 : 218 . 518 

=> 53x + 3 < 1.518 

=> 53.(x + 1) < 518 

=> 3.(x + 1) < 18

=> x + 1 < 18 : 3

=> x + 1 < 6

=> x < 6 - 1

=> x < 5

5 tháng 8 2020

c. \(9\le3^x:3\le81\)

\(\Rightarrow3^2\le3^{x-1}\le3^4\)

\(\Rightarrow3^{x-1}\in\left\{3^2;3^3;3^4\right\}\)

\(\Rightarrow x-1\in\left\{2;3;4\right\}\)

\(\Rightarrow x\in\left\{3;4;5\right\}\)

d. Thêm đk : x thuộc N

 \(5^x.5^{x+1}.5^{x+2}\le2^{18}.5^{18}:2^{18}\)

\(\Rightarrow5^{x+x+1+x+2}\le5^{18}\)

\(\Rightarrow x+x+x+1+2\le18\)

\(\Rightarrow3x+3\le18\)

\(\Rightarrow3\left(x+1\right)\le18\)

\(\Rightarrow x+1\le6\)

\(\Rightarrow x\le5\)

\(\Rightarrow x\in\left\{1;2;3;4;5\right\}\)