![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
2A = 2( 1 + 2 + 22 + .... + 22010 )
= 2 + 22 + 23 + .... + 22011
2A - A = ( 2 + 22 + 23 + .... + 22011) - ( 1 + 2 + 22 + .... + 22010 )
A = 22011 - 1 > 22010 - 1 = B
=> A > B
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(A=2^0+2^1+2^2+...+2^{2010}\)
\(\Rightarrow2A=2^1+2^2+2^3+...+2^{2011}\)
\(\Rightarrow2A-A=\left(2^1+2^2+2^3+...+2^{2011}\right)-\left(2^0+2^1+2^2+...+2^{2010}\right)\)
\(\Rightarrow A=2^{2011}-2^0\)
\(\Rightarrow A=2^{2011}-1\)
Vì \(2^{2011}-1=2^{2011}-1\) nên \(A=B\)
Vậy A = B
b) Ta có: \(A=2009.2011=2009.\left(2010+1\right)=2009.2010+2009\)
\(B=2010^2=\left(2009+1\right).2010=2009.2010+2010\)
Vì \(2009.2010+2009< 2009.2010+2010\) nên A < B
Vậy A < B
\(A=2^0+2^1+2^2+2^3+....+2^{2010}\)
\(2.A=2\left(2^0+2^1+2^2+2^3+....+2^{2010}\right)\)
\(2.A=2.2^0+2.2+2.2^2+2.2^3+....+2.2^{2010}\)
\(2.A=2+2^2+2^3+2^4+....+2^{2011}\)
\(2A-A=\left(2+2^2+2^3+2^4+....+2^{2011}\right)-\left(2^0+2^1+2^2+2^3+....+2^{2010}\right)\)
\(A=\left(2-2^1\right)+\left(2^2-2^2\right)+\left(2^3-2^3\right)+....+\left(2^{2010}-2^{2010}\right)+2^{2011}-2^0\)
\(A=0+0+0+....+0+2^{2011}-2^0\)
\(A=2^{2011}-2^0\)
\(A=2^{2011}-1\)
Vì \(A=2^{2011}-1\) ; \(B=2^{2011}-1\)
\(=>A=B\)
Vậy \(A=B\)
b) \(A=2009.2001\)
\(A=\left(2010-1\right)\left(2010+1\right)\)
\(A=\left(2010-1\right).2010+\left(2010-1\right).1\)
\(A=2010.2010-2010.1+1.2010-1.1\)
\(A=2010^2-2010+2010-1\)
\(A=2010^2+0-1\)
\(A=2010^2-1\)
Vì \(A=2010^2-1\) ; \(B=2010^2\)
\(=>A< B\)
Vậy \(A< B\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)A=2^0+2^1+2^2+....+2^2010
ta lay:2A=2^1+2^2+2^3+...+2^2011
ta lay:2A-A=(2^1+2^2+2^3+...+2^2011)-(2^0+2^1+2^3+...+2^2010)
=2^1+2^2+2^3+...+2^2011-2^0-2^1-2^2-2^3-...-2^2010
=2^2011-2^0=2^2011-1=A
Vay A=2^2011-1
![](https://rs.olm.vn/images/avt/0.png?1311)
BT!:
Ta có: 21+22+........+22010
= (21+22)+(23+24)+.........+(22009+22010)
=2(1+21)+23(1+21)+............+22009(1+21)
=2.3+23.3+.........+22009.3
=(2+23+........+22009).3\(⋮3\)
các câu còn lại làm tương tự thay số và thay nhóm nha.
Bài 2:
a: \(2A=2+2^2+...+2^{2011}\)
=>\(A=2^{2011}-1>2^{2010}-1=B\)
b: \(10^{30}=\left(10^3\right)^{10}=1000^{10}\)
2^100=(2^10)^10=1024^10
=>A<B
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=2^0+2^1+2^2+2^3+.....+2^{2010}\)
\(2A=2^1+2^2+2^3+2^4+......+2^{2011}\)
\(2A-A=\left(2^1+2^2+2^3+2^4+.....+2^{2011}\right)-\left(2^0+2^2+2^2+2^3+.....+2^{2010}\right)\)
\(A=2^{2011}-1\)
MÀ \(B=2^{2011}-1\)
\(\Rightarrow A=B\)
Xét A=20+21+22+23+...+22010
2A=2.(20+21+22+23+...+22010)
2A=21+22+23+...+22011
2A-A=(21+22+23+...+22011) - (20+21+22+23+...+22010)
A= 22011-20
A=22011-1
Với A=22011-1 và B=22011-1 thì A=B
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét A=1+2+22+23+...+22010
2A=2+22+23+24+...+22011
2A-A=22011-1
<=> A=22011-1=B
![](https://rs.olm.vn/images/avt/0.png?1311)
A = 20 + 21 + 22 + 23 + ... + 22009 + 22010
=> A = 20 + ( 21 + 22 ) + ( 23 + 24 ) + ... + ( 22009 + 22010 )
=> A = 20 + 2 ( 1 + 2 ) + 23 ( 1 + 2 ) + ... + 22009 ( 1 + 2 )
=> A = 20 + 2 . 3 + 23 . 3 + ... + 22009 . 3
=> A = 1 + 3 ( 2 + 23 + ... + 22009 )
Vì : 3 ( 2 + 23 + ... + 22009 ) \(⋮\)3 => A chia cho 3 dư 1
Vậy : A chia cho 3 dư 1