Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét A=1+2+22+23+...+22010
2A=2+22+23+24+...+22011
2A-A=22011-1
<=> A=22011-1=B
2^0=1
A=1+2^1+2^2+2^3+.........+2^2010
A.2=2.(1+2^1+2^2+...+2^2010)
A.2=2.1+2.2^1+.......+2.2^2010
A.2=2+2^2+2^3+....+2^2010+2^2011
A=A.2-A=2^2011-1 (lấy số cuối trừ số đầu nha)
A=B
a/ \(2A=2+2^2+2^.+2^4+...+2^{2011}\)
\(A=2A-A=2^{2011}-1=B\)
b
\(A=\left(3^3\right)^{150}=27^{150}\)
\(B=\left(5^2\right)^{150}=25^{150}\)
\(27^{150}>25^{150}\Rightarrow3^{450}>5^{300}\)
C=3450 và D=5300
C=3450=(33)150=27150
D=5300=(52)150=25150
Vì C=27150>D=25150
Nên:C=3450>D=5300
E=333444 và F=444333
E=333444 = (3.111)4.111 = (81.1114)111
F=444333 = (4.111)3.111 = (64.1113)111
Vì E=(81.1114)111 > F(64.1113)111 nên E=333444 > F=444333
b)Ta có : A=2009.2011=2009.(2010+1)=2009.2010+2009
B=2010^2=2010.2010=(2009+1).2010=2009.2010+2010
Vì 2009<2010 => A<B.
a) A = 20 + 21 + 22 + 23 + ... + 22010 và B = 22011 - 1
Ta có:
A = 20 + 21 + 22 + 23 + ... + 22010
=> 2A = 21 + 22 + 23 + ... + 22011
mà A = 20 + 21 + 22 + 23 + ... + 22010
_________________________________________
=> A = 22011 - 20
=> A = 22011 - 1
mà B = 22011 - 1
=> A = B
Có : 2A = 2^1+2^2+....+2^2011
A=2A-A=(2^1+2^2+....+2^2011)-(2^0+2^1+2^2+....+2^2010) = 2^2011-2^0 = 2^2011-1 = B
=> A = B
k mk nha
a) \(A=2^0+2^1+2^2+...+2^{2010}\)
\(\Rightarrow2A=2^1+2^2+2^3+...+2^{2011}\)
\(\Rightarrow2A-A=\left(2^1+2^2+2^3+...+2^{2011}\right)-\left(2^0+2^1+2^2+...+2^{2010}\right)\)
\(\Rightarrow A=2^{2011}-2^0\)
\(\Rightarrow A=2^{2011}-1\)
Vì \(2^{2011}-1=2^{2011}-1\) nên \(A=B\)
Vậy A = B
b) Ta có: \(A=2009.2011=2009.\left(2010+1\right)=2009.2010+2009\)
\(B=2010^2=\left(2009+1\right).2010=2009.2010+2010\)
Vì \(2009.2010+2009< 2009.2010+2010\) nên A < B
Vậy A < B
\(A=2^0+2^1+2^2+2^3+....+2^{2010}\)
\(2.A=2\left(2^0+2^1+2^2+2^3+....+2^{2010}\right)\)
\(2.A=2.2^0+2.2+2.2^2+2.2^3+....+2.2^{2010}\)
\(2.A=2+2^2+2^3+2^4+....+2^{2011}\)
\(2A-A=\left(2+2^2+2^3+2^4+....+2^{2011}\right)-\left(2^0+2^1+2^2+2^3+....+2^{2010}\right)\)
\(A=\left(2-2^1\right)+\left(2^2-2^2\right)+\left(2^3-2^3\right)+....+\left(2^{2010}-2^{2010}\right)+2^{2011}-2^0\)
\(A=0+0+0+....+0+2^{2011}-2^0\)
\(A=2^{2011}-2^0\)
\(A=2^{2011}-1\)
Vì \(A=2^{2011}-1\) ; \(B=2^{2011}-1\)
\(=>A=B\)
Vậy \(A=B\)
b) \(A=2009.2001\)
\(A=\left(2010-1\right)\left(2010+1\right)\)
\(A=\left(2010-1\right).2010+\left(2010-1\right).1\)
\(A=2010.2010-2010.1+1.2010-1.1\)
\(A=2010^2-2010+2010-1\)
\(A=2010^2+0-1\)
\(A=2010^2-1\)
Vì \(A=2010^2-1\) ; \(B=2010^2\)
\(=>A< B\)
Vậy \(A< B\)
\(A=2^0+2^1+2^2+2^3+.....+2^{2010}\)
\(2A=2^1+2^2+2^3+2^4+......+2^{2011}\)
\(2A-A=\left(2^1+2^2+2^3+2^4+.....+2^{2011}\right)-\left(2^0+2^2+2^2+2^3+.....+2^{2010}\right)\)
\(A=2^{2011}-1\)
MÀ \(B=2^{2011}-1\)
\(\Rightarrow A=B\)
Xét A=20+21+22+23+...+22010
2A=2.(20+21+22+23+...+22010)
2A=21+22+23+...+22011
2A-A=(21+22+23+...+22011) - (20+21+22+23+...+22010)
A= 22011-20
A=22011-1
Với A=22011-1 và B=22011-1 thì A=B