Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này thử là nhanh nhất (hi hi , mình đùa vui thôi chứ minh ko bít làm)
1. Gọi ƯCLN (a,c) =k, ta có : a=ka1, c=kc1 và (a1,c1)=1
Thay vào ab=cd được ka1b=bc1d nên
a1b=c1d (1)
Ta có: a1b \(⋮\)c1 mà (a1,c1)=1 nên b\(⋮\)c1. Đặt b=c1m ( \(m\in N\)*) , thay vào (1) được a1c1m = c1d nên a1m=d
Do đó: \(a^5+b^5+c^5+d^5=k^5a_1^5+c_1^5m^5+k^5c_1^5+a_1^5m^5\)
\(=k^5\left(a_1^5+c_1^5\right)+m^5\left(a_1^5+c_1^5\right)=\left(a_1^5+c_1^5\right)\left(k^5+m^5\right)\)
Do a1, c1, k, m là các số nguyên dương nên \(a^5+b^5+c^5+d^5\)là hợp số (đpcm)
2. Nhận xét: 1 số chính phương khi chia cho 3 chỉ có thể sư 0 hoặc 1.
Ta có \(a^2+b^2⋮3\). Xét các TH của tổng 2 số dư : 0+0, 0+1,1+1, chỉ có 0+0 \(⋮\)3.
Vậy \(a^2+b^2⋮3\)thì a và b \(⋮3\)
b) Nhận xét: 1 số chính phương khi chia cho 7 chỉ có thể dư 0,1,2,4 (thật vậy, xét a lần lượt bằng 7k, \(7k\pm1,7k\pm2,7k\pm3\)thì a2 chia cho 7 thứ tự dư 0,1,4,2)
Ta có: \(a^2+b^2⋮7\). Xét các TH của tổng 2 số dư : 0+0, 0+1, 0+2, 0+4 , 1+1, 1+2, 2+2, 1+4, 2+4, 4+4; chỉ có 0+0 \(⋮7\). Vậy......
a) Phần này dễ, bạn cứ làm theo hướng của phần b là được. Mình sẽ làm phần b khó hơn.
b) Ta có: a3-a = a.(a-1).(a+1) (với a thuộc Z). Mà a.(a-1).(a+1) là tích của 3 số tự nhiên liên tiếp nên
a.(a-1).(a+1) chia hết cho 3.
=> a3- a chia hết cho 3.
Chứng minh tương tự ta có b3 - b chia hết cho 3 và c3 - c chia hết cho 3 với mọi b,c thuộc N.
=> a3+b3+c3 - (a+b+c) luôn chia hết cho 3 với mọi a,b,c thuộc N.
Do đó nếu a3+b3+c3 chia hết cho 3 thì a+b+c chia hết cho 3 và điều ngược lại cũng đúng.
Vậy đpcm.
Tớ làm thêm một cách cho câu b nhé ;)
Ta có: \(a^3+b^3⋮3\Rightarrow a^3+b^3+3a^2b+3ab^2-3a^2b-3ab^2⋮3\) \(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)⋮3\)
Do a và b là các số tự nhiên => \(3ab\left(a+b\right)⋮3=>\left(a+b\right)^3⋮3\)
=> a+b chia hết cho 3
a) \(3x^2+2y⋮11\Leftrightarrow16\left(3x^2+2y\right)⋮11\Leftrightarrow48x^2-33x^2+32y-44y⋮11\)
\(\Leftrightarrow15x^2-12y⋮11\)
b) \(2x+3y^2⋮7\Leftrightarrow10\left(2x+3y^2\right)⋮7\Leftrightarrow20x-14x+30y^2-14y^2⋮7\)
\(\Leftrightarrow6x+16y^2⋮7\)
Do a2 và b2 chia hết cho 2 => a2 và b2 cùng chẵn hoặc cùng lẻ
=> a và b cùng chẵn hoặc cùng lẻ
=> a + b chia hết cho 2