Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn ơi a2 là a^2 bạn nhé,mấy cái khác cũng tương tự,vì mình lười bấm nhé)
A=2a2b2+2b2c2+2a2c2−a4−b4−c4
⟺A=4a2c2−(a4+b4+c4−2a2b2+2a2c2−2b2c2)
⟺A=4a2c2−(a2−b2+c2)2
⟺A=(2ac+a2−b2+c2)(2ac−a2+b2−c2)
⟺A=((a+c)2−b2)(b2−(a−c)2)
⟺A=(a+b+c)(a+c−b)(b+a−c)(b−a+c)
Mà a, b, ca, b, c là 33 cạnh của tam giác nên:a+b+c>0;a+c−b>0;b+a−c>0;b−a+c>0⟹(a+b+c)(a+c−b)(b+a−c)(b−a+c)>0
⟹A>0 (Dpcm)
444448888855555695+777+6666555888852652522222222222222222256585965
Đặt A=2a2b2+2c2a2+2b2c2 - a4 - b4 - c4
A= - ( a4 + b4 + c4 - 2(ab)2 - 2(bc)2-2(ca)2)
A= - (a4 + b4 + c4 - 2(ab)2 - 2(bc)2-2(ca)2 - 4(ca)2)
áp dụng hàng đẳng thức:
(a2-b2+c2)=a4+b4+c4-2(ab)2-2(bc)2+2(ca)2
A= - ( (a2-b2+c2)-4(ca)2)
A= - (a2-b2+c2-2ca) (a2-b2+c2+2ca)
CHÚC BẠN HỌC TỐT##
bạn sử dụng BĐT tam giác :
a < b + c => a2 < b2 + c2
b < a + c => b2 < a2 + c2
c < a + b => c2 < a2 + b2
bạn tự làm nhé vì mik làm bạn cũng ko chọn mik
Ta có:A = a4 + b4 + c4 - 2a2b2 - 2b2c2 - 2a2c2 = (a2)2 + (b2)2 + (c2)2 + 2a2b2 - 2b2c2 - 2a2c2 +
4a2b2 = (a2+b2-c2)2-4a2b2
=(a2+b2-c2-2ab)(a2+b2-c2+2ab) (1)
Vì a;b;c là 3 cạnh của tam giác nên c>|a-b| =>c2>(|a-b|)2=(a-b)2
=>c2>a2+b2-2ab =>a2+b2-c2-2ab<0 (2)
lại có a+b>c =>(a+b)2>c2 =>a2+b2-c2 +2ab > 0 (3)
Từ (1)(2)(3) =>A<0 (Đpcm)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
=> bc+ac+ab=0
ta có
\(bc+ac=-ab\)
<=> \(\left(bc+ac\right)^2=a^2b^2\)
<=> \(b^2c^2+a^2c^2+2abc^2=a^2b^2\)
<=> \(b^2c^2+a^2c^2-a^2b^2=-2abc^2\)
tương tự
\(a^2b^2+b^2c^2-c^2a^2=-2ab^2c\)
\(c^2a^2+a^2b^2-b^2c^2=-2a^2bc\)
thay vào E ta đc
\(E=\dfrac{-a^2b^2c^2}{2ab^2c}-\dfrac{a^2b^2c^2}{2abc^2}-\dfrac{a^2b^2c^2}{2a^2bc}\)
=\(-\dfrac{ac}{2}-\dfrac{ab}{2}-\dfrac{bc}{2}=\dfrac{-\left(ac+ab+bc\right)}{2}=0\) (vì ac+bc+ab=0 cmt)
Ta có: A = a4 + b4 + c4 - 2a2b2 - 2b2c2 - 2a2c2 = (a2)2 + (b2)2 + (c2)2 + 2a2b2 - 2b2c2 - 2a2c2 + 4a2b2 = (a2 + b2 - c2)2 - 4a2b2
= (a2 + b2 - c2 - 2ab).(a2 + b2 - c2 + 2ab) (1)
Vì a; b;c là 3 cạnh của tam giác nên c > |a - b| => c2 > (|a - b|)2 = (a - b)2
=> c2 > a2 + b2 - 2ab => a2 + b2 - c2 - 2ab < 0 (2)
lại có : a+ b > c => (a+ b) 2 > c2 => a2 + b2 - c2 + 2ab > 0 (3)
Từ (1)(2)(3) => A < 0 => đpcm
Lời giải:
Áp dụng BĐT Bunhiacopkxy:
\((2a^2+b^2)(2a^2+c^2)=(a^2+a^2+b^2)(a^2+c^2+a^2)\geq (a^2+ac+ab)^2\)
\(=[a(a+b+c)]^2\)
\(\Rightarrow \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a^3}{[a(a+b+c)]^2}=\frac{a}{(a+b+c)^2}\)
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế thu được:
\(\sum \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a+b+c}{(a+b+c)^2}=\frac{1}{a+b+c}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$