Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{1}{2^2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)
.............
\(\frac{1}{10^2}< \frac{1}{9\cdot10}\)
Suy ra:
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{9\cdot10}\)
Suy ra: \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}< \frac{9}{10}< 1\)
Vậy ...............
\(A=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{100^2}-1\right)=\frac{-3}{2^2}.\frac{-8}{3^2}...\frac{-9999}{100^2}\)
\(=-\frac{3.8...9999}{2^2.3^2...100^2}=-\frac{1.3.2.4...99.101}{2.2.3.3...100.100}=-\frac{\left(1.2....99\right).\left(3.4...101\right)}{\left(2.3...100\right).\left(2.3...100\right)}=-\frac{1.101}{100.2}=-\frac{101}{200}\)
\(< -\frac{100}{200}=\frac{1}{2}=B\)
=> A < B
Bài làm:
Ta có: \(\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+...+\frac{1}{98.100}\)
\(=\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\right)+\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{98.100}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{100}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{99}\right)+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(=\frac{1}{2}.\frac{98}{99}+\frac{1}{2}.\frac{49}{100}\)
\(=\frac{49}{99}+\frac{49}{200}\)
\(=\frac{14651}{19800}\)
Cho S = \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+...+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}\)
\(\Rightarrow S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\)
\(\Rightarrow2S=2.\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\right)\)
\(\Rightarrow2S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^8}\)
\(\Rightarrow2S-S=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)
\(\Rightarrow S=1-\frac{1}{2^9}\) \(=\frac{511}{512}\)
Chúc bn hc tốt!
=\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+....+\frac{1}{512}\)
\(=\)CÂU HỎI TƯƠNG TỰ NHA
= BN BIẾN ĐỔI TUNWHF MẪU THÀNH LŨY THỪA 2 ĐI
MÌNH KO CÓ HỜI GIAN
Nhân 2 bên với 4 được:
\(4E=\frac{4}{3\cdot7}+\frac{4}{7\cdot11}+\frac{4}{11\cdot15}+...+\frac{4}{95\cdot99}\)
\(4E=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{95}-\frac{1}{99}\)
\(4E=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
\(E=\frac{\frac{32}{99}}{4}=\frac{8}{99}\)
Bg
Ta có: E = \(\frac{1}{3\times7}+\frac{1}{7\times11}+\frac{1}{11\times15}+...+\frac{1}{95\times99}\)
=> E = \(\frac{1}{4}\times\left(\frac{4}{3\times7}+\frac{4}{7\times11}+\frac{4}{11\times15}+...+\frac{4}{95\times99}\right)\)
=> E = \(\frac{1}{4}\times\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{95}-\frac{1}{99}\right)\)
=> E = \(\frac{1}{4}\times\left(\frac{1}{3}-\frac{1}{99}\right)\)
=> E = \(\frac{1}{4}\times\left(\frac{33}{99}-\frac{1}{99}\right)\)
=> E = \(\frac{1}{4}\times\frac{32}{99}\)
=> E = \(\frac{8}{99}\)