K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2018

Ta có:

\(\frac{1}{2^2}< \frac{1}{1\cdot2}\)

\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)

.............

\(\frac{1}{10^2}< \frac{1}{9\cdot10}\)

Suy ra:

\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{9\cdot10}\)

Suy ra: \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}< \frac{9}{10}< 1\)

Vậy ...............

20 tháng 2 2018

Giúp mình nhanh nha. Thanks các bạn 

6 tháng 8 2020

\(A=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{100^2}-1\right)=\frac{-3}{2^2}.\frac{-8}{3^2}...\frac{-9999}{100^2}\)

\(=-\frac{3.8...9999}{2^2.3^2...100^2}=-\frac{1.3.2.4...99.101}{2.2.3.3...100.100}=-\frac{\left(1.2....99\right).\left(3.4...101\right)}{\left(2.3...100\right).\left(2.3...100\right)}=-\frac{1.101}{100.2}=-\frac{101}{200}\)

\(< -\frac{100}{200}=\frac{1}{2}=B\)

=> A < B

17 tháng 7 2020

Bài làm:

Ta có: \(\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+...+\frac{1}{98.100}\)

\(=\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\right)+\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{98.100}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{100}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{99}\right)+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{100}\right)\)

\(=\frac{1}{2}.\frac{98}{99}+\frac{1}{2}.\frac{49}{100}\)

\(=\frac{49}{99}+\frac{49}{200}\)

\(=\frac{14651}{19800}\)

26 tháng 7 2018

\(\frac{1}{\chi}-\frac{y}{2}=\frac{1}{6}\)

\(\Rightarrow\chi=?;y=?\)

vay...

11 tháng 8 2017

Cho S = \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+...+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}\)

\(\Rightarrow S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\)

\(\Rightarrow2S=2.\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\right)\)

\(\Rightarrow2S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^8}\)

\(\Rightarrow2S-S=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)

\(\Rightarrow S=1-\frac{1}{2^9}\) \(=\frac{511}{512}\)

Chúc bn hc tốt!

11 tháng 8 2017

=\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+....+\frac{1}{512}\)

\(=\)CÂU HỎI TƯƠNG TỰ NHA

= BN BIẾN ĐỔI TUNWHF MẪU THÀNH LŨY THỪA 2 ĐI 

MÌNH KO CÓ HỜI GIAN

Nhân 2 bên với 4 được:

\(4E=\frac{4}{3\cdot7}+\frac{4}{7\cdot11}+\frac{4}{11\cdot15}+...+\frac{4}{95\cdot99}\)

\(4E=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{95}-\frac{1}{99}\)

\(4E=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)

\(E=\frac{\frac{32}{99}}{4}=\frac{8}{99}\)

18 tháng 7 2020

Bg

Ta có: E = \(\frac{1}{3\times7}+\frac{1}{7\times11}+\frac{1}{11\times15}+...+\frac{1}{95\times99}\)

=> E = \(\frac{1}{4}\times\left(\frac{4}{3\times7}+\frac{4}{7\times11}+\frac{4}{11\times15}+...+\frac{4}{95\times99}\right)\)

=> E = \(\frac{1}{4}\times\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{95}-\frac{1}{99}\right)\)

=> E = \(\frac{1}{4}\times\left(\frac{1}{3}-\frac{1}{99}\right)\)

=> E = \(\frac{1}{4}\times\left(\frac{33}{99}-\frac{1}{99}\right)\)

=> E = \(\frac{1}{4}\times\frac{32}{99}\)

=> E = \(\frac{8}{99}\)

6 tháng 3 2015

1 phần 8 - 1 phần 2= 1 phần 8 - 4 phần 8 = -3 phần 8

6 tháng 4 2022

= -3 phần 8