K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2022

ta có: a.3 = 3 + 32 + 33 + ... +32009 a3 - a  = (3 + 32 +33 + ... + 32009) - (1 + 3 + 32 + ... + 32008) a2 = 32009 - 1 a = 32009 - 1 / 2

 

11 tháng 6 2017

b) \(\frac{2009.14+1994+2007.2008}{2008+2008.505+2008.504}\)

\(=\frac{\left(2008+1\right).14+1994+2007.2008}{2008.\left(1+505+504\right)}\)

\(=\frac{2008.14+14+1994+2007.2008}{2008.1010}\)

\(=\frac{2008.14+14+1994+2007.2008}{2008.1010}\)

\(=\frac{2008.14+2008+2007.2008}{2008.1010}\)

\(=\frac{2008.\left(14+1+2007\right)}{2008.1010}\)

\(=\frac{2008.2022}{2008.1010}=\frac{1011}{505}\)

11 tháng 6 2017

c) 1 . 1 + 2 . 2 + 3 . 3 + 4 . 4 + 5 . 5 + ... + 98 . 98

= 1 . ( 2 - 1 ) + 2 . ( 3 - 1 ) + 3 . ( 4 - 1 ) + 4 . ( 5 - 1 ) + 5 . ( 6 - 1 ) + ... + 98 . ( 99 - 1 )

= 1 . 2 - 1 + 2 . 3 - 2 + 3 . 4 - 3 + 4 . 5 - 4 + 5 . 6 - 5 + ... + 98 . 99 - 98

= ( 1 . 2 + 2 . 3 + 3 . 4 + 4 . 5 + 5 . 6 + ... + 98 . 99 ) - ( 1 + 2 + 3 + 4 + 5 + ... + 98 )

đặt A = 1 . 2 + 2 . 3 + 3 . 4 + 4 . 5 + 5 . 6 + ... + 98 . 99

3A = 1 . 2 . 3 + 2 . 3 . 3 + 3 . 4 . 3 + 4 . 5 . 3 + 5 . 6 . 3 + ... + 98 . 99 . 3

3A = 1 .2  . 3 + 2 . 3 . ( 4 - 1 ) + 3 . 4 . ( 5 - 2 ) + 5 . 6 . ( 7 - 4 ) + ... + 98 . 99 . ( 100 - 97 )

3A = 1 . 2 . 3 + 2 . 3 . 4 - 1 . 2 . 3 + 3 . 4 . 5 - 2 . 3 . 4 + 5 . 6 . 7 - 4 . 5 . 6 + ... + 98 . 99 . 100 -97 . 98 . 99

3A = 98 . 99 . 100

A  = 98 . 99 . 100 : 3

A = 323400

đặt B = 1 + 2 + 3 + ... + 98

Số số hạng của B là :

( 98 - 1 ) : 1 + 1 = 98 ( số hạng )

Tổng B là :

( 98 + 1 ) . 98 : 2 = 4851

Thay A , B vào ta được :

323400 - 4851 = 318549

5 tháng 6 2020

Bài làm:

\(A=1-2+3-4+5-...-2008+2009\)

\(A=\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+...+\left(2007-2008\right)+2009\)

\(A=-1-1-1-...-1+2009\)(1004 số -1)

\(A=-1004+2009=1005\)

\(B=1+2-3-4+5+6-7-...-2007-2008+2009+2010\)

\(B=1+\left(2-3-4+5\right)+\left(6-7-8+9\right)+...+\left(2006-2007-2008+2009\right)+2010\)

\(B=1+0+0+...+0+2010\)

\(B=2011\)

Học tốt!!!!

1 tháng 3 2018

Câu 1.8: Giải

*Ta có: \(\dfrac{1}{2^2}=\dfrac{1}{2.2}>\dfrac{1}{2.3}\)

\(\dfrac{1}{3^2}=\dfrac{1}{3.3}>\dfrac{1}{3.4}\)

...

\(\dfrac{1}{9^2}=\dfrac{1}{9.9}< \dfrac{1}{9.10}\)

\(\Rightarrow A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)

\(A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(A>\dfrac{1}{2}-\dfrac{1}{10}\)

\(A>\dfrac{2}{5}\) (1)

*Ta có: \(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\)

...

\(\dfrac{1}{9^2}=\dfrac{1}{9.9}< \dfrac{1}{8.9}\)

\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{8.9}\)

\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{8}-\dfrac{1}{9}\)

\(A< 1-\dfrac{1}{9}\)

\(A< \dfrac{8}{9}\) (2)

Từ (1) và (2) \(\Rightarrow\dfrac{2}{5}< A< \dfrac{8}{9}\)

17 tháng 9

có : Q = [ 2 + 2^2 ] + [ 2^3 +2^4] + ... + [2^9 +  2^10]

Q = 2 [1+2] +2^3[1 +2]+ ...+ 2^9 [1+2]

Q = 2 . 3+2^3 .3 +... + 2^9 .3

Q = 3. [ 2 + 2^3 +... + 2^9]

Vậy Q chia hết cho 3

5 tháng 6 2016
  • Đặt \(S=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{2008}{3^{2008}}\)(1)
  • Ta có: \(\frac{1}{3}S=\frac{1}{3^2}+\frac{2}{3^3}+\frac{3}{3^4}+...+\frac{2007}{3^{2008}}+\frac{2008}{3^{2009}}\)(2)
  • Trừ vế với vế 2 đửng thức (1) và (2) ta có:

\(S-\frac{1}{3}S=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}-\frac{2008}{3^{2009}}<\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\)(3)

  • Đặt \(P=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\)
  • \(\left(1-\frac{1}{3}\right)P=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}-\left(\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{2008}}+\frac{1}{3^{2009}}\right)=\frac{1}{3}-\frac{1}{3^{2009}}<\frac{1}{3}\)
  • \(\frac{2}{3}P<\frac{1}{3}\Rightarrow P<\frac{1}{2}\)(4)
  • Từ (3) và (4) 

\(\Rightarrow\frac{2}{3}S<\frac{1}{2}\Rightarrow S<\frac{3}{4}\)(ĐPCM)