K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2016
  • Đặt \(S=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{2008}{3^{2008}}\)(1)
  • Ta có: \(\frac{1}{3}S=\frac{1}{3^2}+\frac{2}{3^3}+\frac{3}{3^4}+...+\frac{2007}{3^{2008}}+\frac{2008}{3^{2009}}\)(2)
  • Trừ vế với vế 2 đửng thức (1) và (2) ta có:

\(S-\frac{1}{3}S=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}-\frac{2008}{3^{2009}}<\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\)(3)

  • Đặt \(P=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\)
  • \(\left(1-\frac{1}{3}\right)P=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}-\left(\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{2008}}+\frac{1}{3^{2009}}\right)=\frac{1}{3}-\frac{1}{3^{2009}}<\frac{1}{3}\)
  • \(\frac{2}{3}P<\frac{1}{3}\Rightarrow P<\frac{1}{2}\)(4)
  • Từ (3) và (4) 

\(\Rightarrow\frac{2}{3}S<\frac{1}{2}\Rightarrow S<\frac{3}{4}\)(ĐPCM)