Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1/5-1/6+1/6-1/7+1/7-1/8+......+1/49-1/50
= 1/5-1/50
= 9/50
\(A=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\)
\(A=\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}\)
\(A=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-...+\frac{1}{9}-\frac{1}{10}\)
\(A=\frac{1}{4}-\frac{1}{10}\)
\(A=\frac{3}{20}\)
\(A=\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{9.10}\)
\(A=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10}\)
\(A=\frac{1}{4}-\frac{1}{10}=\frac{5}{20}-\frac{2}{20}=\frac{3}{20}\)
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(A=1-\frac{1}{8}\)
\(A=\frac{7}{8}\)
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}\)
\(A=1-\frac{1}{8}\)
\(A=\frac{7}{8}\)
\(=\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{12.13}\)
áp dụng \(\frac{1}{a.b}=\frac{1}{a}-\frac{1}{b}\)làm sẽ có các số nghịch đảo và được kết quả là 1/4 - 1/13
A = 1/20 + 1/30 + 1/42 + 1/56 + 1/72 + 1/90 + 1/110 + 1/132 + 1/156
A = 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8 + 1/8.9 + 1/9.10 + 1/10.11 + 1/11.12 + 1/12.13
A = 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 + 1/8 - 1/9 + 1/9 - 1/10 + 1/10 - 1/11 + 1/11 - 1/12 + 1/12 - 1/13
A = 1/4 - 1/13
A = 9/52
1/20 + 1/30 + 1/42 + 1/56 + 1/72 + 1/90
= 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8 + 1/8.9 + 1/9.10
= 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 + 1/8 - 1/9 + 1/9 - 1/10
= 1/4 - 1/10
= 3/20
Các phân số này đều nhỏ hơn 1
Thế nên A < 1
Bài này chỉ cần so sánh với 1 thôi
Các số hạng của tổng A đều bé hơn 1 nên A < 1
Đây là quy tắc với các phân số cùng tử là 1 .
Nhé !
\(=\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{\cdot5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\)
=\(\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{6}\right)+\left(\frac{1}{6}-\frac{1}{7}\right)+\left(\frac{1}{7}-\frac{1}{8}\right)+\left(\frac{1}{8}-\frac{1}{9}\right)\)
=1/3-1/9=2/9
-_______________________________________________________________________________
li-ke cho mk nha bn Vũ lệ Quyên
\(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}=\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}+\frac{1}{6\times7}+\frac{1}{7\times8}+\frac{1}{8\times9}\)
\(=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)
\(=\frac{1}{3}-\frac{1}{9}=\frac{3}{9}-\frac{1}{9}=\frac{2}{9}\)
1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56
= 1/1x2 + 1/2x3 + 1/3x4 + 1/4x5 + 1/5x6 + 1/6x7 + 1/7x8
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8
= 1 - 1/8
= 7/8
1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56
= 1/1x2 + 1/2x3 + 1/3x4 + 1/4x5 + 1/5x6 + 1/6x7 + 1/7x8
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/7 - 1/8
= 1 - 1/8
= 7/8
A=1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9+1/9.10+1/10.11
A=1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10+1/10-1/11
A=1/2-(1/3-1/3)-(1/4-1/4)-(1/5-1/5)-(1/6-1/6)-(1/7-1/7)-(1/8-1/8)-(1/9-1/9)-(1/10-1/10)-1/11
A=1/2-1/11 A=11/22-2/22
A=9/22
\(\frac{1}{2}\)+\(\frac{1}{6}\)+ \(\frac{1}{12}\)+\(\frac{1}{20}\)+\(\frac{1}{30}\)+\(\frac{1}{42}\)+\(\frac{1}{56}\)=\(\frac{7}{8}\)
1/2+1/6+1/12+1/20+1/30+1/42+1/56=7/8=0.875
kick mik nha xin đó
A = \(\dfrac{1}{30}\) + \(\dfrac{1}{42}\)+ \(\dfrac{1}{56}\) +.....+\(\dfrac{1}{210}\)
A = \(\dfrac{1}{5\times6}\) + \(\dfrac{1}{6\times7}\)+ \(\dfrac{1}{7\times8}\)+ .........+\(\dfrac{1}{14\times15}\)
A = \(\dfrac{1}{5}\) - \(\dfrac{1}{6}\)+ \(\dfrac{1}{6}\) - \(\dfrac{1}{7}\)+ \(\dfrac{1}{7}\) - \(\dfrac{1}{8}\)+..............+\(\dfrac{1}{14}\)- \(\dfrac{1}{15}\)
A = \(\dfrac{1}{5}\) - \(\dfrac{1}{15}\)
A = \(\dfrac{3}{15}\) - \(\dfrac{1}{15}\)
A = \(\dfrac{2}{15}\)
\(A=\dfrac{6-5}{5x6}+\dfrac{7-6}{6x7}+\dfrac{8-7}{7x8}+...+\dfrac{15-14}{14x15}=\)
\(=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{14}-\dfrac{1}{15}=\)
\(=\dfrac{1}{5}-\dfrac{1}{15}=\dfrac{2}{15}\)