Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\orbr{\begin{cases}5x-1=3\\5x-1=-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}5x=4\\5x=-2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{4}{5}\\x=\frac{-2}{5}\end{cases}}\)
b) 2x+1=-0,1 <=> 2x=-1,1=>x=-0,55
c) (2x-3)4 .[1-(2x-3)2 ]=0
do (2x-3)4 lớn hơn 0 nên 1-(2x-3)2=0=>(2x-3)2=1=>2x-3=1=>2x=4=>x=2
d) tương tự câu c)
1. Ta có :
f(x) = ( m - 1 ) . 12 - 3m . 1 + 2 = 0
f(x) = m - 1 - 3m + 2 = -2m + 1 = 0
\(\Rightarrow m=\frac{1}{2}\)
2.
a) M(x) = -2x2 + 5x = 0
\(\Rightarrow-2x^2+5x=x.\left(-2x+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\-2x+5=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{5}{2}\end{cases}}\)
b) N(x) = x . ( x - 1/2 ) + 2 . ( x - 1/2 ) = 0
N(x) = ( x + 2 ) . ( x - 1/2 ) = 0
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x-\frac{1}{2}=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-2\\x=\frac{1}{2}\end{cases}}\)
c) P(x) = x2 + 2x + 2015 = x2 + x + x + 1 + 2014 = x . ( x + 1 ) + ( x + 1 ) + 2014 = ( x + 1 ) . ( x + 1 ) + 2014 = ( x + 1 )2 + 2014
vì ( x + 1 )2 + 2014 > 0 nên P(x) không có nghiệm
1
a, 4x2+4x+2
= 2x2+2x2+2x+2x+2
= 2x2+(2x2+2x)+(2x+2)
= 2x2+ 2x(x+1)+2(x+1)
= 2x2+(2x+2)(x+1)
= 2x2+2(x+1)(x+1)
=2x2+2(x+1)2
Để 2x2+2(x+1)2=0
=>\(\left\{{}\begin{matrix}2x^2=0\\2\left(x+1\right)^2=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x^2=0\\\left(x+1\right)^2=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)(vô lý)
=> đa thức 4x2+4x+2 vô nghiệm
Câu 1: a) x = 1 là nghiệm của đa thức f(x)
b) x = -1 là nghiệm của đa thức g(x)
c) x = 1 là nghiệm của đa thức h(x)
Câu 2: Số 1 là ngiệm của đa thức f(x)
A(x) = 5x\(^4\) - 5 + 6x\(^3\) +x\(^4\) - 5x -12
=\(6x^4+6x^3\)-5x-17
B(x) = 8x\(^4\) +2x\(^3\) - 2x\(^4\) + 4x\(^3\) - 5x - 15 - 2x\(^3\)
=\(6x^4\)+\(4x^3\)-5x-15
a,C(x)=A(x)-B(x)=(\(6x^4+6x^3\)-5x-17)-(\(6x^4\)+\(4x^3\)-5x-15)
=\(6x^4+6x^3\)-5x-17-\(6x^4\)-\(4x^3\)+5x+15
=\((6x^4-6x^4)\)+\((6x^3-4x^3)\)+(-5x+5x)+ (-17-15)
= \(2x^3-32\)
b,C(x)=0<=>\(2x^3-32=0\)
=>\(2x^3=32\)
=>\(x^3=16\)
vậy C(x) vô nghiệm
a) P(x) = \(2x^3+2x^2-7x^2-7x+6x+6\)
\(=2x\left(x+1\right)-7x\left(x+1\right)+6\left(x+1\right)\)
\(=\left(x+1\right)\left(2x^2-7x+6\right)\)
\(=\left(x+1\right)\left(2x^2-4x-3x+6\right)\)
\(=\left(x+1\right)\left(2x\left(x-2\right)-3\left(x-2\right)\right)\)
\(=\left(x+1\right)\left(x-2\right)\left(2x-3\right)\)
Cho P(x) = 0 và ta sẽ tìm được nghiệm một cách dễ dàng:)
b) Có cách này nè:) Bài này tớ không dùng khai triển nữa đâu, vừa mất thời gian lại thiếu tự nhiên nữa chớ:( và ko chắc đâu
\(Q\left(x\right)=\left(x+1\right)^2\left(x-3\right)\left(x+5\right)+3\left(x^2+2x+1\right)+36\)
\(=\left(x+1\right)^2\left(x-3\right)\left(x+5\right)+3\left(x+1\right)^2+36\)
\(=\left(x+1\right)^2\left[\left(x-3\right)\left(x+5\right)+3\right]+36=0\)
\(=\left(x+1\right)^2\left[x^2+2x-12\right]+36=0\)
\(=\left(x^2+2x+1\right)\left(x^2+2x-12\right)+36\)
Đặt x2 + 2x = t suy ra \(Q\left(x\right)=Q\left(t\right)=\left(t+1\right)\left(t-12\right)+36\)
\(=t^2-11t-12+36=t^2-11t+24\)
\(=\left(t-8\right)\left(t-3\right)\). Cho Q(x) = 0 tức là Q(t) = 0 khi đó suy ra
t = 8 hoặc t = 3
Với t = 8 suy ra \(x^2+2x-8=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)
Với t - 3 suy ra \(x^2+2x-3=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\) (mấy chỗ này dễ bạn tự phân tích thành nhân tử rồi giải ra thôi)
Vậy tập hợp nghiệm của đa thức là: S = {2;-4;1;-3}