K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2015

        A=1+2+3+4+...+1502

=>\(A=\frac{1502.\left(1502+1\right)}{2}\)

=>\(A=\frac{1502.1503}{2}\)

=>\(A=\frac{2257506}{2}\)

=>\(A=1128753\)

l-i-k-e cho mình nha bạn.

27 tháng 6 2015

Số số hạng có trong dãy số trên là:

(1502 - 1) : 1 + 1 = 1502 (số)

Tổng trên là:

(1502 + 1) x 1502 : 2 = 1128753

Đáp số: 1128573

3 tháng 8 2017

\(\left(\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{3001.3004}\right)\cdot\left(x+1\right)=\frac{9009}{1502}\)

\(\Leftrightarrow\frac{2}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{3001}-\frac{1}{3004}\right)\cdot\left(x+1\right)=\frac{9009}{1502}\)

\(\Leftrightarrow\frac{2}{3}\cdot\left(1-\frac{1}{3004}\right)\cdot\left(x+1\right)=\frac{9009}{1502}\)

\(\Leftrightarrow\frac{2}{3}\cdot\frac{3003}{3004}\cdot\left(x+1\right)=\frac{9009}{1502}\)

\(\Leftrightarrow\frac{1001}{1502}\cdot\left(x+1\right)=\frac{9009}{1502}\)

\(\Leftrightarrow x+1=\frac{9009}{1502}\div\frac{1001}{1502}\)

\(\Leftrightarrow x+1=9\Rightarrow x=8\)

4 tháng 11 2023

Bài 1

a) 3 2/5 - 1/2

= 17/5 - 1/2

= 34/10 - 5/10

= 29/10

b) 4/5 + 1/5 × 3/4

= 4/5 + 3/20

= 16/20 + 3/20

= 19/20

c) 3 1/2 × 1 1/7

= 7/2 × 8/7

= 4

d) 4 1/6 : 2 1/3

= 25/6 : 7/3

= 25/14

4 tháng 11 2023

Bài 2

a) 3 × 1/2 + 1/4 × 1/3

= 3/2 + 1/12

= 18/12 + 1/12

= 19/12

b) 1 4/5 - 2/3 : 2 1/3

= 9/5 - 2/3 : 7/3

= 9/5 - 2/7

= 63/35 - 10/35

= 53/35

 

3 tháng 8 2023

a,a+1/4=2 3/4-1 1/2    

a+1/2=5/4

    a=5/4-1/2

     a=3/4

b,a-7/4=13/4-7/9

a-7/4=89/36

        a= 89/36+7/4

         a=152/36

c,3/2-a=17/6-1/6

3/2-a=8/3

       a= 3/2-8/3

       a= -7/6

25 tháng 8 2023

a) \(...\dfrac{11}{4}-a+\dfrac{1}{4}=\dfrac{3}{2}\)

\(\dfrac{11}{4}+\dfrac{1}{4}-a=\dfrac{3}{2}\)

\(3-a=\dfrac{3}{2}\)

\(a=3-\dfrac{3}{2}\)

\(a=\dfrac{6}{2}-\dfrac{3}{2}\)

\(a=\dfrac{3}{2}\)

b) \(...\dfrac{13}{4}-a-\dfrac{13}{4}=\dfrac{7}{8}\)

\(\dfrac{13}{4}-\dfrac{13}{4}-a=\dfrac{7}{8}\)

\(0-a=\dfrac{7}{8}\)

\(a=-\dfrac{7}{8}\) (ra số âm lớp 5 chưa học nên bạn xem lại đề)

c) \(...\dfrac{17}{6}-\dfrac{3}{2}-a=\dfrac{1}{6}\)

\(\dfrac{17}{6}-\dfrac{9}{6}-a=\dfrac{1}{6}\)

\(\dfrac{8}{6}-a=\dfrac{1}{6}\)

\(a=\dfrac{8}{6}-\dfrac{1}{6}\)

\(a=\dfrac{7}{6}\)

25 tháng 8 2023

a, 2\(\dfrac{3}{4}\) - a + \(\dfrac{1}{4}\) = 1\(\dfrac{1}{2}\)

     a = 2 + \(\dfrac{3}{4}\) + \(\dfrac{1}{4}\) - 1 - \(\dfrac{1}{2}\)

     a  = 2 + 1 - 1 - \(\dfrac{1}{2}\)

     a  = 2 - \(\dfrac{1}{2}\)

     a = \(\dfrac{3}{2}\)

b, 3\(\dfrac{1}{4}\) - a - 3\(\dfrac{1}{4}\) = \(\dfrac{7}{8}\)

    (3\(\dfrac{1}{4}\) - 3\(\dfrac{1}{4}\)) - a = \(\dfrac{7}{8}\)

                     a = - \(\dfrac{7}{8}\)

c,    2\(\dfrac{5}{6}\) - 1\(\dfrac{1}{2}\) - a  = \(\dfrac{1}{6}\)

    a =  2 + \(\dfrac{5}{6}\) - 1 - \(\dfrac{1}{2}\)  - \(\dfrac{1}{6}\) 

     a =  (2-1) + (\(\dfrac{5}{6}\) - \(\dfrac{1}{6}\)) - \(\dfrac{1}{2}\)

     a = 1 +  \(\dfrac{2}{3}\) - \(\dfrac{1}{2}\)

     a = \(\dfrac{7}{6}\)

2 tháng 6 2018

a) \(A=98+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\)(có 98 phân số nên ta cộng 1 vào mỗi phân số)

\(A=\left(\frac{1}{2}+1\right)+\left(\frac{1}{3}+1\right)+...+\left(\frac{1}{99}+1\right)\)

\(A=\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}\)

Và \(B=\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}\)

\(\Rightarrow\frac{A}{B}=\frac{\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}}{\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}}=1\)

b) \(A=2018+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\)(có 2018 phân số nên ta cộng 1 vào mỗi phân số)

\(A=\left(\frac{1}{2}+1\right)+\left(\frac{1}{3}+1\right)+...+\left(\frac{1}{2019}+1\right)\)

\(A=\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}\)

Và \(B=\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}\)

\(\Rightarrow\frac{A}{B}=\frac{\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}}{\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}}=1\)

c) \(A=\frac{99}{1}+\frac{98}{2}+...+\frac{1}{99}\)

\(A=99+\frac{98}{2}+...+\frac{1}{99}\)(có 98 phân số nên ta cộng 1 vào từng phân số)

\(A=\left(\frac{98}{2}+1\right)+\left(\frac{97}{3}+1\right)+...+\left(\frac{1}{99}+1\right)+1\)

\(A=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}+1\)

\(A=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)\)

Và \(B=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\)

\(\Rightarrow\frac{A}{B}=\frac{100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}}=100\)

2 tháng 6 2018

a)\(B=\frac{3}{2}+\frac{4}{3}+\frac{5}{4}+...+\frac{100}{99}\)

\(B=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{99}\right)\)

\(\Rightarrow B=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}\right)\)

\(\Rightarrow B=98+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}\)

\(\Rightarrow A:B=\frac{A}{B}=\frac{98+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}}{98+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}}=1.\)

Vậy \(A:B=1.\)

b)\(B=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{2019}\right)\)

\(\Rightarrow B=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\right)\)

\(\Rightarrow B=2018+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\)

\(\Rightarrow A:B=\frac{A}{B}=\frac{2018+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}}{2018+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}}=1.\)

Vậy \(A:B=1.\)

c)\(A=\left(1+1+...+1\right)+\frac{98}{2}+\frac{97}{3}+...+\frac{2}{98}+\frac{1}{99}\)

\(A=\left(1+\frac{98}{2}\right)+\left(1+\frac{97}{3}\right)+...+\left(1+\frac{2}{98}\right)+\left(1+\frac{1}{99}\right)\)

\(A=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{98}+\frac{100}{99}\)

\(A=100\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}+\frac{1}{99}\right)\)

\(\Rightarrow A:B=\frac{A}{B}=\frac{100\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}+\frac{1}{99}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}+\frac{1}{99}}=1.\)

Vậy \(A:B=1.\)

18 tháng 9 2021

YÊU TỚ ĐI RỒI TỐ NOI

18 tháng 9 2021

yêu khiểu gì được

a) \(2\dfrac{3}{4}-a+\dfrac{1}{4}=1\dfrac{1}{2}\) 

=> \(\dfrac{11}{4}\) \(-a+\dfrac{1}{4}=\dfrac{3}{2}\) 

=> \(\dfrac{11}{4}-a\) = \(\dfrac{3}{2}-\dfrac{1}{4}\) 

=> a = \(\dfrac{11}{4}-\dfrac{5}{4}\) =\(\dfrac{3}{2}\) 

Vậy a = \(\dfrac{3}{2}\) 

b) \(3\dfrac{1}{4}-a-1\dfrac{3}{4}=\dfrac{7}{8}\) 

=> \(\dfrac{13}{4}-a-\dfrac{7}{4}=\dfrac{7}{8}\) 

=> \(\dfrac{13}{4}-a=\dfrac{21}{8}\) 

=> \(a=\dfrac{13}{4}-\dfrac{21}{8}=\dfrac{5}{8}\) 

Vậy a = \(\dfrac{5}{8}\)

14 tháng 9 2021

a)\(\dfrac{2}{3}.\dfrac{4}{5}+\dfrac{1}{3}.\dfrac{4}{5}=\left(\dfrac{2}{3}+\dfrac{1}{3}\right).\dfrac{4}{5}=1.\dfrac{4}{5}=\dfrac{4}{5}\)

b)\(\dfrac{2}{3}.\dfrac{4}{5}-\dfrac{1}{3}.\dfrac{4}{5}=\left(\dfrac{2}{3}-\dfrac{1}{3}\right).\dfrac{4}{5}=\dfrac{1}{3}.\dfrac{4}{5}=\dfrac{4}{15}\)

14 tháng 9 2021

a) \(\dfrac{2}{3}\times\dfrac{4}{5}+\dfrac{1}{3}\times\dfrac{4}{5}=\dfrac{4}{5}\times\left(\dfrac{2}{3}+\dfrac{1}{3}\right)=\dfrac{4}{5}\times1=\dfrac{4}{5}\)

b) \(\dfrac{2}{3}\times\dfrac{4}{5}-\dfrac{1}{3}\times\dfrac{4}{5}=\dfrac{4}{5}\times\left(\dfrac{2}{3}-\dfrac{1}{3}\right)=\dfrac{4}{5}\times\dfrac{1}{3}=\dfrac{4}{15}\)

c) \(\dfrac{1}{2}:\dfrac{3}{4}+\dfrac{1}{6}:\dfrac{3}{4}=\dfrac{1}{2}\times\dfrac{4}{3}+\dfrac{1}{6}\times\dfrac{4}{3}=\dfrac{4}{3}\times\left(\dfrac{1}{2}+\dfrac{1}{6}\right)=\dfrac{4}{3}\times\dfrac{2}{3}=\dfrac{8}{9}\)

d) \(\dfrac{1}{2}:\dfrac{3}{4}-\dfrac{1}{6}:\dfrac{3}{4}=\dfrac{1}{2}\times\dfrac{4}{3}-\dfrac{1}{6}\times\dfrac{4}{3}=\dfrac{4}{3}\left(\dfrac{1}{2}-\dfrac{1}{6}\right)=\dfrac{4}{3}\times\dfrac{1}{3}=\dfrac{4}{9}\)