Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2.2}< \frac{1}{1.2}\)
\(\frac{1}{3.3}< \frac{1}{2.3}\)
......
\(\frac{1}{100.100}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{100.100}< \frac{1}{1.2}+..+\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2.2}+..+\frac{1}{100.100}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow\frac{1}{2.2}+..+\frac{1}{100.100}< 1-\frac{1}{100}< 1\).Suy ra điều phải chứng minh. câu b tương tự. bấm đúng cho mình nha
a. 1⋅2⋅3+2⋅4⋅6+3⋅6⋅9+4⋅8⋅12
= 6+2⋅4⋅6+3⋅6⋅9+4⋅8⋅12
= 6+48+3⋅6⋅9+4⋅8⋅12
= 6+48+162+4⋅8⋅12
= 6+48+162+384
= 600
b . Ta có \(A=\frac{2010+2011}{2011+2012}=\frac{2010}{2011+2012}+\frac{2011}{2011+2012}.\)
Ta có : \(\frac{2010}{2011+2012}< \frac{2010}{2011}\) và \(\frac{2011}{2011+2012}< \frac{2011}{2012}\)
=> \(\frac{2010+2011}{2011+2012}< \frac{2010}{2011}+\frac{2011}{2012}\)
=> A < B
a = 1/2 nhân 2 + 1/3 nhân 3 + 1/4 nhân 4 + .....+ 1/2009 nhân 2009 + 1/2010 nhân 2010
so sánh a với 1
a=1/2.2+1/3.3+1/4.4+...+1/2009.2009+1/2010.2010(có 2009 số hạng)
a=1+1+1+...+1+1(2009 số 1)
a=1.2009=2009
Vậy a>1
tổng của A là
1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 = 223/140
=> 223/140 > 6/7
k mk nha
a, \(A=\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{2011\cdot2011}\)
có :
\(\frac{1}{2\cdot2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)
\(\frac{1}{4\cdot4}< \frac{1}{3\cdot4}\)
...
\(\frac{1}{2011\cdot2011}< \frac{1}{2010\cdot2011}\)
nên :
\(A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2010\cdot2011}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2010}-\frac{1}{2011}\)
\(\Rightarrow A< 1-\frac{1}{2011}\)
\(\Rightarrow A< \frac{2010}{2011}< 1\)
b, \(A=\frac{2010}{2011}=1-\frac{1}{2011}\)
\(\frac{3}{4}=1-\frac{1}{4}\)
\(\frac{1}{4}>\frac{1}{2011}\)
nên :
\(A>\frac{3}{4}\)
B<3\4 là đúng
khó thế