Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1.2 + 2.3 + 3.4 + ...+ 59.60
3A = 1.2.3 + 2.3.3 + 3.4.3 + ...+ 59.60.3
3A = 1.2.(3-0) + 2.3.(4-1) + 3.4.(5-2) +...+ 59.60.(61-58)
3A = 1.2.3 - 0 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 +...+ 59.60.61 - 58.59.60
3A = 58.59.60 => A = 58.59.60 : 3 = 68 440
B = 12 + 22 + 32 + 592
B = 1.2 + 2.2 + 3.3 + 59.59
B = 2 + 4 + 9 + 3481
B = 3496
vậy A - B = 68 440 - 3 496 = 64 944
( bấm nhé )
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{59.60}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{59}-\dfrac{1}{60}=1-\dfrac{1}{60}=\dfrac{59}{60}\)
\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{59\cdot60}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{59}-\dfrac{1}{60}\)
\(=1-\dfrac{1}{60}=\dfrac{59}{60}\)
\(1+\frac{7}{1\cdot2}+\frac{7}{2\cdot3}+\frac{7}{3\cdot4}+...+\frac{7}{59\cdot60}\)
\(=1+7\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{59\cdot60}\right)\)
\(=1+7\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{59}-\frac{1}{60}\right)\)
\(=1+7\left(1-\frac{1}{60}\right)\)
\(=1+7\cdot\frac{59}{60}\)
\(P=\left(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{59.60}\right).31.32.33....59.60\)
\(\text{Ta có:}\)
\(91=13.7\)
\(\rightarrow4.13+5.17=42.35⋮91\)
\(\left(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{59.60}\right).31.32.33....59.60\)
\(\rightarrow\left(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{59.60}\right).31.32.....60.42.35\)
\(\rightarrow\left(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{59.60}\right).31.32....60.20.91⋮91\)
\(A=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{59\cdot60}\)
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{69}-\frac{1}{60}\)
\(A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{59}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{25}\)
\(A=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)
\(\text{Có 3 trường hợp có thể xảy ra:}\)
\(A=B\)
\(A< B\)
\(A>B\)
3A = 3 . 1 . 2 + 2. 3 .3 + 3 . 4.3 + ... + 59 . 60 . 3
=> 3A = 1.2.( 3 - 0) + 2 . 3.( 4-1) + ...+ 59 .60 . (61 - 58)
=> 3A = 1 . 2 . 3 + 2 . 3.4 - 1.2.3 + 3.4.5 - 2. 3. 4 + ... + 59 . 60 . 61 - 58 . 59 . 60
=> 3A = 59 . 60 . 61
=> A = 71980