Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.
Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2
\(\Rightarrow\) ĐPCM
1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!
a)=>A=\(1+\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)
Đặt tổng trong ngoặc là M
=>M=\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)\(=1-\frac{1}{50}< 1\)
Khi đó A=1+M (M<1)
Ta có công thức :1+x<2 nếu x<1
=>A<1
A = 4 + 42 + 43 + ... + 496
= ( 4 + 42 + 43 ) + ( 44 + 45 + 46 ) + ... + ( 494 + 495 + 496 )
= 4( 1 + 4 + 42 ) + 44( 1 + 4 + 42 ) + ... + 494( 1 + 4 + 42 )
= 4.21 + 44.21 + ... + 494.21
= 21( 4 + 44 + ... + 494 ) chia hết cho 21 ( đpcm )
A=(1+2)+(2^2+2^3)+....+(2^2018+2^2019)
A=(1+2) + 2^2(1+2)+ +(2^2018(1+2)
a=3.1+2^2 x 3 +.......+2^2018x3
A=3(1+2^2+....+2^2018) chia hết cho 3 (vì 3 nhân với số nào cũng chia hết cho 3)
=>A chia hết cho 3
Phương pháp giải dạng tống quát :
Muốn chứng minh A \(⋮̸\) b ta cần biến đổi A = kb + r ( k \(\in\) Z; r \(⋮̸\) b)
Áp dụng :
A = 1 + 2 + 22 + 23 +....+299
A = 1 + ( 2+22 + 23 ) + .....+ ( 297 + 298 + 299)
A = 1 + 14 +.......+ 296.( 2 + 22 + 23)
A = 1 + 14. ( 20 +....+296)
vì 14 \(⋮\) 7 => 14.( 20 +.....+296) \(⋮\) 7
1 \(⋮̸\) 7
Cộng vế với vế ta được : 1 + 14.(20 + ....296) \(⋮̸\) 7
Hay A = 1 + 2 + 22 + 23 + 24 +......299 \(⋮̸\) 7 (đpcm)